danagi c59ad40aef
Add auto alpha tuning and exploration noise for sac. (#80)
Add class BaseNoise and GaussianNoise for the concept of exploration noise.
Add new test for sac tested in MountainCarContinuous-v0,
which should benefits from the two above new feature.
2020-06-16 22:17:28 +08:00

84 lines
2.4 KiB
Python

import numpy as np
from typing import Union, Optional
from abc import ABC, abstractmethod
class BaseNoise(ABC, object):
"""The action noise base class."""
def __init__(self, **kwargs) -> None:
super(BaseNoise, self).__init__()
@abstractmethod
def __call__(self, **kwargs) -> np.ndarray:
"""Generate new noise."""
raise NotImplementedError
def reset(self, **kwargs) -> None:
"""Reset to the initial state."""
pass
class GaussianNoise(BaseNoise):
"""Class for vanilla gaussian process,
used for exploration in DDPG by default.
"""
def __init__(self,
mu: float = 0.0,
sigma: float = 1.0):
super().__init__()
self._mu = mu
assert 0 <= sigma, 'noise std should not be negative'
self._sigma = sigma
def __call__(self, size: tuple) -> np.ndarray:
return np.random.normal(self._mu, self._sigma, size)
class OUNoise(BaseNoise):
"""Class for Ornstein-Uhlenbeck process, as used for exploration in DDPG.
Usage:
::
# init
self.noise = OUNoise()
# generate noise
noise = self.noise(logits.shape, eps)
For required parameters, you can refer to the stackoverflow page. However,
our experiment result shows that (similar to OpenAI SpinningUp) using
vanilla gaussian process has little difference from using the
Ornstein-Uhlenbeck process.
"""
def __init__(self,
mu: float = 0.0,
sigma: float = 0.3,
theta: float = 0.15,
dt: float = 1e-2,
x0: Optional[Union[float, np.ndarray]] = None
) -> None:
super(BaseNoise, self).__init__()
self._mu = mu
self._alpha = theta * dt
self._beta = sigma * np.sqrt(dt)
self._x0 = x0
self.reset()
def __call__(self, size: tuple, mu: Optional[float] = None) -> np.ndarray:
"""Generate new noise. Return a ``numpy.ndarray`` which size is equal
to ``size``.
"""
if self._x is None or self._x.shape != size:
self._x = 0
if mu is None:
mu = self._mu
r = self._beta * np.random.normal(size=size)
self._x = self._x + self._alpha * (mu - self._x) + r
return self._x
def reset(self) -> None:
"""Reset to the initial state."""
self._x = self._x0