This is the PR for C51algorithm: https://arxiv.org/abs/1707.06887 1. add C51 policy in tianshou/policy/modelfree/c51.py. 2. add C51 net in tianshou/utils/net/discrete.py. 3. add C51 atari example in examples/atari/atari_c51.py. 4. add C51 statement in tianshou/policy/__init__.py. 5. add C51 test in test/discrete/test_c51.py. 6. add C51 atari results in examples/atari/results/c51/. By running "python3 atari_c51.py --task "PongNoFrameskip-v4" --batch-size 64", get best_result': '20.50 ± 0.50', in epoch 9. By running "python3 atari_c51.py --task "BreakoutNoFrameskip-v4" --n-step 1 --epoch 40", get best_reward: 407.400000 ± 31.155096 in epoch 39.
156 lines
5.9 KiB
Python
156 lines
5.9 KiB
Python
import os
|
|
import torch
|
|
import pprint
|
|
import argparse
|
|
import numpy as np
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
|
|
from tianshou.policy import C51Policy
|
|
from tianshou.env import SubprocVectorEnv
|
|
from tianshou.utils.net.discrete import C51
|
|
from tianshou.trainer import offpolicy_trainer
|
|
from tianshou.data import Collector, ReplayBuffer
|
|
|
|
from atari_wrapper import wrap_deepmind
|
|
|
|
|
|
def get_args():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('--task', type=str, default='PongNoFrameskip-v4')
|
|
parser.add_argument('--seed', type=int, default=0)
|
|
parser.add_argument('--eps-test', type=float, default=0.005)
|
|
parser.add_argument('--eps-train', type=float, default=1.)
|
|
parser.add_argument('--eps-train-final', type=float, default=0.05)
|
|
parser.add_argument('--buffer-size', type=int, default=100000)
|
|
parser.add_argument('--lr', type=float, default=0.0001)
|
|
parser.add_argument('--gamma', type=float, default=0.99)
|
|
parser.add_argument('--num-atoms', type=int, default=51)
|
|
parser.add_argument('--v-min', type=float, default=-10.)
|
|
parser.add_argument('--v-max', type=float, default=10.)
|
|
parser.add_argument('--n-step', type=int, default=3)
|
|
parser.add_argument('--target-update-freq', type=int, default=500)
|
|
parser.add_argument('--epoch', type=int, default=100)
|
|
parser.add_argument('--step-per-epoch', type=int, default=10000)
|
|
parser.add_argument('--collect-per-step', type=int, default=10)
|
|
parser.add_argument('--batch-size', type=int, default=32)
|
|
parser.add_argument('--training-num', type=int, default=16)
|
|
parser.add_argument('--test-num', type=int, default=10)
|
|
parser.add_argument('--logdir', type=str, default='log')
|
|
parser.add_argument('--render', type=float, default=0.)
|
|
parser.add_argument(
|
|
'--device', type=str,
|
|
default='cuda' if torch.cuda.is_available() else 'cpu')
|
|
parser.add_argument('--frames_stack', type=int, default=4)
|
|
parser.add_argument('--resume_path', type=str, default=None)
|
|
parser.add_argument('--watch', default=False, action='store_true',
|
|
help='watch the play of pre-trained policy only')
|
|
return parser.parse_args()
|
|
|
|
|
|
def make_atari_env(args):
|
|
return wrap_deepmind(args.task, frame_stack=args.frames_stack)
|
|
|
|
|
|
def make_atari_env_watch(args):
|
|
return wrap_deepmind(args.task, frame_stack=args.frames_stack,
|
|
episode_life=False, clip_rewards=False)
|
|
|
|
|
|
def test_c51(args=get_args()):
|
|
env = make_atari_env(args)
|
|
args.state_shape = env.observation_space.shape or env.observation_space.n
|
|
args.action_shape = env.env.action_space.shape or env.env.action_space.n
|
|
# should be N_FRAMES x H x W
|
|
print("Observations shape:", args.state_shape)
|
|
print("Actions shape:", args.action_shape)
|
|
# make environments
|
|
train_envs = SubprocVectorEnv([lambda: make_atari_env(args)
|
|
for _ in range(args.training_num)])
|
|
test_envs = SubprocVectorEnv([lambda: make_atari_env_watch(args)
|
|
for _ in range(args.test_num)])
|
|
# seed
|
|
np.random.seed(args.seed)
|
|
torch.manual_seed(args.seed)
|
|
train_envs.seed(args.seed)
|
|
test_envs.seed(args.seed)
|
|
# define model
|
|
net = C51(*args.state_shape, args.action_shape,
|
|
args.num_atoms, args.device)
|
|
optim = torch.optim.Adam(net.parameters(), lr=args.lr)
|
|
# define policy
|
|
policy = C51Policy(
|
|
net, optim, args.gamma, args.num_atoms, args.v_min, args.v_max,
|
|
args.n_step, target_update_freq=args.target_update_freq
|
|
).to(args.device)
|
|
# load a previous policy
|
|
if args.resume_path:
|
|
policy.load_state_dict(torch.load(
|
|
args.resume_path, map_location=args.device
|
|
))
|
|
print("Loaded agent from: ", args.resume_path)
|
|
# replay buffer: `save_last_obs` and `stack_num` can be removed together
|
|
# when you have enough RAM
|
|
buffer = ReplayBuffer(args.buffer_size, ignore_obs_next=True,
|
|
save_only_last_obs=True, stack_num=args.frames_stack)
|
|
# collector
|
|
train_collector = Collector(policy, train_envs, buffer)
|
|
test_collector = Collector(policy, test_envs)
|
|
# log
|
|
log_path = os.path.join(args.logdir, args.task, 'c51')
|
|
writer = SummaryWriter(log_path)
|
|
|
|
def save_fn(policy):
|
|
torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))
|
|
|
|
def stop_fn(mean_rewards):
|
|
if env.env.spec.reward_threshold:
|
|
return mean_rewards >= env.spec.reward_threshold
|
|
elif 'Pong' in args.task:
|
|
return mean_rewards >= 20
|
|
else:
|
|
return False
|
|
|
|
def train_fn(epoch, env_step):
|
|
# nature DQN setting, linear decay in the first 1M steps
|
|
if env_step <= 1e6:
|
|
eps = args.eps_train - env_step / 1e6 * \
|
|
(args.eps_train - args.eps_train_final)
|
|
else:
|
|
eps = args.eps_train_final
|
|
policy.set_eps(eps)
|
|
writer.add_scalar('train/eps', eps, global_step=env_step)
|
|
|
|
def test_fn(epoch, env_step):
|
|
policy.set_eps(args.eps_test)
|
|
|
|
# watch agent's performance
|
|
def watch():
|
|
print("Testing agent ...")
|
|
policy.eval()
|
|
policy.set_eps(args.eps_test)
|
|
test_envs.seed(args.seed)
|
|
test_collector.reset()
|
|
result = test_collector.collect(n_episode=[1] * args.test_num,
|
|
render=args.render)
|
|
pprint.pprint(result)
|
|
|
|
if args.watch:
|
|
watch()
|
|
exit(0)
|
|
|
|
# test train_collector and start filling replay buffer
|
|
train_collector.collect(n_step=args.batch_size * 4)
|
|
# trainer
|
|
result = offpolicy_trainer(
|
|
policy, train_collector, test_collector, args.epoch,
|
|
args.step_per_epoch, args.collect_per_step, args.test_num,
|
|
args.batch_size, train_fn=train_fn, test_fn=test_fn,
|
|
stop_fn=stop_fn, save_fn=save_fn, writer=writer, test_in_train=False)
|
|
|
|
pprint.pprint(result)
|
|
watch()
|
|
|
|
|
|
if __name__ == '__main__':
|
|
test_c51(get_args())
|