train_fn(epoch) -> train_fn(epoch, num_env_step) test_fn(epoch) -> test_fn(epoch, num_env_step)
		
			
				
	
	
		
			108 lines
		
	
	
		
			4.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			108 lines
		
	
	
		
			4.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import os
 | |
| import torch
 | |
| import pprint
 | |
| import argparse
 | |
| import numpy as np
 | |
| from torch.utils.tensorboard import SummaryWriter
 | |
| 
 | |
| from tianshou.policy import PPOPolicy
 | |
| from tianshou.env import SubprocVectorEnv
 | |
| from tianshou.trainer import onpolicy_trainer
 | |
| from tianshou.data import Collector, ReplayBuffer
 | |
| from tianshou.utils.net.discrete import Actor, Critic
 | |
| from tianshou.utils.net.common import Net
 | |
| 
 | |
| from atari import create_atari_environment, preprocess_fn
 | |
| 
 | |
| 
 | |
| def get_args():
 | |
|     parser = argparse.ArgumentParser()
 | |
|     parser.add_argument('--task', type=str, default='Pong')
 | |
|     parser.add_argument('--seed', type=int, default=1626)
 | |
|     parser.add_argument('--buffer-size', type=int, default=20000)
 | |
|     parser.add_argument('--lr', type=float, default=1e-3)
 | |
|     parser.add_argument('--gamma', type=float, default=0.99)
 | |
|     parser.add_argument('--epoch', type=int, default=100)
 | |
|     parser.add_argument('--step-per-epoch', type=int, default=1000)
 | |
|     parser.add_argument('--collect-per-step', type=int, default=10)
 | |
|     parser.add_argument('--repeat-per-collect', type=int, default=2)
 | |
|     parser.add_argument('--batch-size', type=int, default=64)
 | |
|     parser.add_argument('--layer-num', type=int, default=1)
 | |
|     parser.add_argument('--training-num', type=int, default=8)
 | |
|     parser.add_argument('--test-num', type=int, default=8)
 | |
|     parser.add_argument('--logdir', type=str, default='log')
 | |
|     parser.add_argument('--render', type=float, default=0.)
 | |
|     parser.add_argument(
 | |
|         '--device', type=str,
 | |
|         default='cuda' if torch.cuda.is_available() else 'cpu')
 | |
|     # ppo special
 | |
|     parser.add_argument('--vf-coef', type=float, default=0.5)
 | |
|     parser.add_argument('--ent-coef', type=float, default=0.0)
 | |
|     parser.add_argument('--eps-clip', type=float, default=0.2)
 | |
|     parser.add_argument('--max-grad-norm', type=float, default=0.5)
 | |
|     parser.add_argument('--max_episode_steps', type=int, default=2000)
 | |
|     return parser.parse_args()
 | |
| 
 | |
| 
 | |
| def test_ppo(args=get_args()):
 | |
|     env = create_atari_environment(args.task)
 | |
|     args.state_shape = env.observation_space.shape or env.observation_space.n
 | |
|     args.action_shape = env.action_space().shape or env.action_space().n
 | |
|     # train_envs = gym.make(args.task)
 | |
|     train_envs = SubprocVectorEnv([
 | |
|         lambda: create_atari_environment(args.task)
 | |
|         for _ in range(args.training_num)])
 | |
|     # test_envs = gym.make(args.task)
 | |
|     test_envs = SubprocVectorEnv([
 | |
|         lambda: create_atari_environment(args.task)
 | |
|         for _ in range(args.test_num)])
 | |
|     # seed
 | |
|     np.random.seed(args.seed)
 | |
|     torch.manual_seed(args.seed)
 | |
|     train_envs.seed(args.seed)
 | |
|     test_envs.seed(args.seed)
 | |
|     # model
 | |
|     net = Net(args.layer_num, args.state_shape, device=args.device)
 | |
|     actor = Actor(net, args.action_shape).to(args.device)
 | |
|     critic = Critic(net).to(args.device)
 | |
|     optim = torch.optim.Adam(list(
 | |
|         actor.parameters()) + list(critic.parameters()), lr=args.lr)
 | |
|     dist = torch.distributions.Categorical
 | |
|     policy = PPOPolicy(
 | |
|         actor, critic, optim, dist, args.gamma,
 | |
|         max_grad_norm=args.max_grad_norm,
 | |
|         eps_clip=args.eps_clip,
 | |
|         vf_coef=args.vf_coef,
 | |
|         ent_coef=args.ent_coef,
 | |
|         action_range=None)
 | |
|     # collector
 | |
|     train_collector = Collector(
 | |
|         policy, train_envs, ReplayBuffer(args.buffer_size),
 | |
|         preprocess_fn=preprocess_fn)
 | |
|     test_collector = Collector(policy, test_envs, preprocess_fn=preprocess_fn)
 | |
|     # log
 | |
|     writer = SummaryWriter(os.path.join(args.logdir, args.task, 'ppo'))
 | |
| 
 | |
|     def stop_fn(mean_rewards):
 | |
|         if env.env.spec.reward_threshold:
 | |
|             return mean_rewards >= env.spec.reward_threshold
 | |
|         else:
 | |
|             return False
 | |
| 
 | |
|     # trainer
 | |
|     result = onpolicy_trainer(
 | |
|         policy, train_collector, test_collector, args.epoch,
 | |
|         args.step_per_epoch, args.collect_per_step, args.repeat_per_collect,
 | |
|         args.test_num, args.batch_size, stop_fn=stop_fn, writer=writer)
 | |
|     if __name__ == '__main__':
 | |
|         pprint.pprint(result)
 | |
|         # Let's watch its performance!
 | |
|         env = create_atari_environment(args.task)
 | |
|         collector = Collector(policy, env, preprocess_fn=preprocess_fn)
 | |
|         result = collector.collect(n_step=2000, render=args.render)
 | |
|         print(f'Final reward: {result["rew"]}, length: {result["len"]}')
 | |
| 
 | |
| 
 | |
| if __name__ == '__main__':
 | |
|     test_ppo()
 |