This is the PR for C51algorithm: https://arxiv.org/abs/1707.06887 1. add C51 policy in tianshou/policy/modelfree/c51.py. 2. add C51 net in tianshou/utils/net/discrete.py. 3. add C51 atari example in examples/atari/atari_c51.py. 4. add C51 statement in tianshou/policy/__init__.py. 5. add C51 test in test/discrete/test_c51.py. 6. add C51 atari results in examples/atari/results/c51/. By running "python3 atari_c51.py --task "PongNoFrameskip-v4" --batch-size 64", get best_result': '20.50 ± 0.50', in epoch 9. By running "python3 atari_c51.py --task "BreakoutNoFrameskip-v4" --n-step 1 --epoch 40", get best_reward: 407.400000 ± 31.155096 in epoch 39.
92 lines
3.0 KiB
Python
92 lines
3.0 KiB
Python
import torch
|
|
import numpy as np
|
|
|
|
from tianshou.utils import MovAvg
|
|
from tianshou.utils import SummaryWriter
|
|
from tianshou.utils.net.common import Net
|
|
from tianshou.utils.net.discrete import DQN, C51
|
|
from tianshou.exploration import GaussianNoise, OUNoise
|
|
from tianshou.utils.net.continuous import RecurrentActorProb, RecurrentCritic
|
|
|
|
|
|
def test_noise():
|
|
noise = GaussianNoise()
|
|
size = (3, 4, 5)
|
|
assert np.allclose(noise(size).shape, size)
|
|
noise = OUNoise()
|
|
noise.reset()
|
|
assert np.allclose(noise(size).shape, size)
|
|
|
|
|
|
def test_moving_average():
|
|
stat = MovAvg(10)
|
|
assert np.allclose(stat.get(), 0)
|
|
assert np.allclose(stat.mean(), 0)
|
|
assert np.allclose(stat.std() ** 2, 0)
|
|
stat.add(torch.tensor([1]))
|
|
stat.add(np.array([2]))
|
|
stat.add([3, 4])
|
|
stat.add(5.)
|
|
assert np.allclose(stat.get(), 3)
|
|
assert np.allclose(stat.mean(), 3)
|
|
assert np.allclose(stat.std() ** 2, 2)
|
|
|
|
|
|
def test_net():
|
|
# here test the networks that does not appear in the other script
|
|
bsz = 64
|
|
# common net
|
|
state_shape = (10, 2)
|
|
action_shape = (5, )
|
|
data = torch.rand([bsz, *state_shape])
|
|
expect_output_shape = [bsz, *action_shape]
|
|
net = Net(3, state_shape, action_shape, norm_layer=torch.nn.LayerNorm)
|
|
assert list(net(data)[0].shape) == expect_output_shape
|
|
net = Net(3, state_shape, action_shape, dueling=(2, 2))
|
|
assert list(net(data)[0].shape) == expect_output_shape
|
|
# recurrent actor/critic
|
|
data = data.flatten(1)
|
|
net = RecurrentActorProb(3, state_shape, action_shape)
|
|
mu, sigma = net(data)[0]
|
|
assert mu.shape == sigma.shape
|
|
assert list(mu.shape) == [bsz, 5]
|
|
net = RecurrentCritic(3, state_shape, action_shape)
|
|
data = torch.rand([bsz, 8, np.prod(state_shape)])
|
|
act = torch.rand(expect_output_shape)
|
|
assert list(net(data, act).shape) == [bsz, 1]
|
|
# DQN
|
|
state_shape = (4, 84, 84)
|
|
action_shape = (6, )
|
|
data = np.random.rand(bsz, *state_shape)
|
|
expect_output_shape = [bsz, *action_shape]
|
|
net = DQN(*state_shape, action_shape)
|
|
assert list(net(data)[0].shape) == expect_output_shape
|
|
num_atoms = 51
|
|
net = C51(*state_shape, action_shape, num_atoms)
|
|
expect_output_shape = [bsz, *action_shape, num_atoms]
|
|
assert list(net(data)[0].shape) == expect_output_shape
|
|
|
|
|
|
def test_summary_writer():
|
|
# get first instance by key of `default` or your own key
|
|
writer1 = SummaryWriter.get_instance(
|
|
key="first", log_dir="log/test_sw/first")
|
|
assert writer1.log_dir == "log/test_sw/first"
|
|
writer2 = SummaryWriter.get_instance()
|
|
assert writer1 is writer2
|
|
# create new instance by specify a new key
|
|
writer3 = SummaryWriter.get_instance(
|
|
key="second", log_dir="log/test_sw/second")
|
|
assert writer3.log_dir == "log/test_sw/second"
|
|
writer4 = SummaryWriter.get_instance(key="second")
|
|
assert writer3 is writer4
|
|
assert writer1 is not writer3
|
|
assert writer1.log_dir != writer4.log_dir
|
|
|
|
|
|
if __name__ == '__main__':
|
|
test_noise()
|
|
test_moving_average()
|
|
test_net()
|
|
test_summary_writer()
|