Tianshou/test/multiagent/tic_tac_toe_env.py
youkaichao 8c32d99c65
Add multi-agent example: tic-tac-toe (#122)
* make fileds with empty Batch rather than None after reset

* dummy code

* remove dummy

* add reward_length argument for collector

* Improve Batch (#126)

* make sure the key type of Batch is string, and add unit tests

* add is_empty() function and unit tests

* enable cat of mixing dict and Batch, just like stack

* bugfix for reward_length

* add get_final_reward_fn argument to collector to deal with marl

* minor polish

* remove multibuf

* minor polish

* improve and implement Batch.cat_

* bugfix for buffer.sample with field impt_weight

* restore the usage of a.cat_(b)

* fix 2 bugs in batch and add corresponding unittest

* code fix for update

* update is_empty to recognize empty over empty; bugfix for len

* bugfix for update and add testcase

* add testcase of update

* make fileds with empty Batch rather than None after reset

* dummy code

* remove dummy

* add reward_length argument for collector

* bugfix for reward_length

* add get_final_reward_fn argument to collector to deal with marl

* make sure the key type of Batch is string, and add unit tests

* add is_empty() function and unit tests

* enable cat of mixing dict and Batch, just like stack

* dummy code

* remove dummy

* add multi-agent example: tic-tac-toe

* move TicTacToeEnv to a separate file

* remove dummy MANet

* code refactor

* move tic-tac-toe example to test

* update doc with marl-example

* fix docs

* reduce the threshold

* revert

* update player id to start from 1 and change player to agent; keep coding

* add reward_length argument for collector

* Improve Batch (#128)

* minor polish

* improve and implement Batch.cat_

* bugfix for buffer.sample with field impt_weight

* restore the usage of a.cat_(b)

* fix 2 bugs in batch and add corresponding unittest

* code fix for update

* update is_empty to recognize empty over empty; bugfix for len

* bugfix for update and add testcase

* add testcase of update

* fix docs

* fix docs

* fix docs [ci skip]

* fix docs [ci skip]

Co-authored-by: Trinkle23897 <463003665@qq.com>

* refact

* re-implement Batch.stack and add testcases

* add doc for Batch.stack

* reward_metric

* modify flag

* minor fix

* reuse _create_values and refactor stack_ & cat_

* fix pep8

* fix reward stat in collector

* fix stat of collector, simplify test/base/env.py

* fix docs

* minor fix

* raise exception for stacking with partial keys and axis!=0

* minor fix

* minor fix

* minor fix

* marl-examples

* add condense; bugfix for torch.Tensor; code refactor

* marl example can run now

* enable tic tac toe with larger board size and win-size

* add test dependency

* Fix padding of inconsistent keys with Batch.stack and Batch.cat (#130)

* re-implement Batch.stack and add testcases

* add doc for Batch.stack

* reuse _create_values and refactor stack_ & cat_

* fix pep8

* fix docs

* raise exception for stacking with partial keys and axis!=0

* minor fix

* minor fix

Co-authored-by: Trinkle23897 <463003665@qq.com>

* stash

* let agent learn to play as agent 2 which is harder

* code refactor

* Improve collector (#125)

* remove multibuf

* reward_metric

* make fileds with empty Batch rather than None after reset

* many fixes and refactor
Co-authored-by: Trinkle23897 <463003665@qq.com>

* marl for tic-tac-toe and general gomoku

* update default gamma to 0.1 for tic tac toe to win earlier

* fix name typo; change default game config; add rew_norm option

* fix pep8

* test commit

* mv test dir name

* add rew flag

* fix torch.optim import error and madqn rew_norm

* remove useless kwargs

* Vector env enable select worker (#132)

* Enable selecting worker for vector env step method.

* Update collector to match new vecenv selective worker behavior.

* Bug fix.

* Fix rebase

Co-authored-by: Alexis Duburcq <alexis.duburcq@wandercraft.eu>

* show the last move of tictactoe by capital letters

* add multi-agent tutorial

* fix link

* Standardized behavior of Batch.cat and misc code refactor (#137)

* code refactor; remove unused kwargs; add reward_normalization for dqn

* bugfix for __setitem__ with torch.Tensor; add Batch.condense

* minor fix

* support cat with empty Batch

* remove the dependency of is_empty on len; specify the semantic of empty Batch by test cases

* support stack with empty Batch

* remove condense

* refactor code to reflect the shared / partial / reserved categories of keys

* add is_empty(recursive=False)

* doc fix

* docfix and bugfix for _is_batch_set

* add doc for key reservation

* bugfix for algebra operators

* fix cat with lens hint

* code refactor

* bugfix for storing None

* use ValueError instead of exception

* hide lens away from users

* add comment for __cat

* move the computation of the initial value of lens in cat_ itself.

* change the place of doc string

* doc fix for Batch doc string

* change recursive to recurse

* doc string fix

* minor fix for batch doc

* write tutorials to specify the standard of Batch (#142)

* add doc for len exceptions

* doc move; unify is_scalar_value function

* remove some issubclass check

* bugfix for shape of Batch(a=1)

* keep moving doc

* keep writing batch tutorial

* draft version of Batch tutorial done

* improving doc

* keep improving doc

* batch tutorial done

* rename _is_number

* rename _is_scalar

* shape property do not raise exception

* restore some doc string

* grammarly [ci skip]

* grammarly + fix warning of building docs

* polish docs

* trim and re-arrange batch tutorial

* go straight to the point

* minor fix for batch doc

* add shape / len in basic usage

* keep improving tutorial

* unify _to_array_with_correct_type to remove duplicate code

* delegate type convertion to Batch.__init__

* further delegate type convertion to Batch.__init__

* bugfix for setattr

* add a _parse_value function

* remove dummy function call

* polish docs

Co-authored-by: Trinkle23897 <463003665@qq.com>

* bugfix for mapolicy

* pretty code

* remove debug code; remove condense

* doc fix

* check before get_agents in tutorials/tictactoe

* tutorial

* fix

* minor fix for batch doc

* minor polish

* faster test_ttt

* improve tic-tac-toe environment

* change default epoch and step-per-epoch for tic-tac-toe

* fix mapolicy

* minor polish for mapolicy

* 90% to 80% (need to change the tutorial)

* win rate

* show step number at board

* simplify mapolicy

* minor polish for mapolicy

* remove MADQN

* fix pep8

* change legal_actions to mask (need to update docs)

* simplify maenv

* fix typo

* move basevecenv to single file

* separate RandomAgent

* update docs

* grammarly

* fix pep8

* win rate typo

* format in cheatsheet

* use bool mask directly

* update doc for boolean mask

Co-authored-by: Trinkle23897 <463003665@qq.com>
Co-authored-by: Alexis DUBURCQ <alexis.duburcq@gmail.com>
Co-authored-by: Alexis Duburcq <alexis.duburcq@wandercraft.eu>
2020-07-21 14:59:49 +08:00

137 lines
5.2 KiB
Python

import gym
import numpy as np
from functools import partial
from typing import Tuple, Optional
from tianshou.env import MultiAgentEnv
class TicTacToeEnv(MultiAgentEnv):
"""This is a simple implementation of the Tic-Tac-Toe game, where two
agents play against each other.
The implementation is intended to show how to wrap an environment to
satisfy the interface of :class:`~tianshou.env.MultiAgentEnv`.
:param size: the size of the board (square board)
:param win_size: how many units in a row is considered to win
"""
def __init__(self, size: int = 3, win_size: int = 3):
super().__init__()
assert size > 0, f'board size should be positive, but got {size}'
self.size = size
assert win_size > 0, f'win-size should be positive, but got {win_size}'
self.win_size = win_size
assert win_size <= size, f'win-size {win_size} should not ' \
f'be larger than board size {size}'
self.convolve_kernel = np.ones(win_size)
self.observation_space = gym.spaces.Box(
low=-1.0, high=1.0, shape=(size, size), dtype=np.float32)
self.action_space = gym.spaces.Discrete(size * size)
self.current_board = None
self.current_agent = None
self._last_move = None
self.step_num = None
def reset(self) -> dict:
self.current_board = np.zeros((self.size, self.size), dtype=np.int32)
self.current_agent = 1
self._last_move = (-1, -1)
self.step_num = 0
return {
'agent_id': self.current_agent,
'obs': np.array(self.current_board),
'mask': self.current_board.flatten() == 0
}
def step(self, action: [int, np.ndarray]
) -> Tuple[dict, np.ndarray, np.ndarray, dict]:
if self.current_agent is None:
raise ValueError(
"calling step() of unreset environment is prohibited!")
assert 0 <= action < self.size * self.size
assert self.current_board.item(action) == 0
_current_agent = self.current_agent
self._move(action)
mask = self.current_board.flatten() == 0
is_win, is_opponent_win = False, False
is_win = self._test_win()
# the game is over when one wins or there is only one empty place
done = is_win
if sum(mask) == 1:
done = True
self._move(np.where(mask)[0][0])
is_opponent_win = self._test_win()
if is_win:
reward = 1
elif is_opponent_win:
reward = -1
else:
reward = 0
obs = {
'agent_id': self.current_agent,
'obs': np.array(self.current_board),
'mask': mask
}
rew_agent_1 = reward if _current_agent == 1 else (-reward)
rew_agent_2 = reward if _current_agent == 2 else (-reward)
vec_rew = np.array([rew_agent_1, rew_agent_2], dtype=np.float32)
if done:
self.current_agent = None
return obs, vec_rew, np.array(done), {}
def _move(self, action):
row, col = action // self.size, action % self.size
if self.current_agent == 1:
self.current_board[row, col] = 1
else:
self.current_board[row, col] = -1
self.current_agent = 3 - self.current_agent
self._last_move = (row, col)
self.step_num += 1
def _test_win(self):
"""test if someone wins by checking the situation around last move"""
row, col = self._last_move
rboard = self.current_board[row, :]
cboard = self.current_board[:, col]
current = self.current_board[row, col]
rightup = [self.current_board[row - i, col + i]
for i in range(1, self.size - col) if row - i >= 0]
leftdown = [self.current_board[row + i, col - i]
for i in range(1, col + 1) if row + i < self.size]
rdiag = np.array(leftdown[::-1] + [current] + rightup)
rightdown = [self.current_board[row + i, col + i]
for i in range(1, self.size - col) if row + i < self.size]
leftup = [self.current_board[row - i, col - i]
for i in range(1, col + 1) if row - i >= 0]
diag = np.array(leftup[::-1] + [current] + rightdown)
results = [np.convolve(k, self.convolve_kernel, mode='valid')
for k in (rboard, cboard, rdiag, diag)]
return any([(np.abs(x) == self.win_size).any() for x in results])
def seed(self, seed: Optional[int] = None) -> int:
pass
def render(self, **kwargs) -> None:
print(f'board (step {self.step_num}):')
pad = '==='
top = pad + '=' * (2 * self.size - 1) + pad
print(top)
def f(i, data):
j, number = data
last_move = i == self._last_move[0] and j == self._last_move[1]
if number == 1:
return 'X' if last_move else 'x'
if number == -1:
return 'O' if last_move else 'o'
return '_'
for i, row in enumerate(self.current_board):
print(pad + ' '.join(map(partial(f, i), enumerate(row))) + pad)
print(top)
def close(self) -> None:
pass