This is the PR for C51algorithm: https://arxiv.org/abs/1707.06887 1. add C51 policy in tianshou/policy/modelfree/c51.py. 2. add C51 net in tianshou/utils/net/discrete.py. 3. add C51 atari example in examples/atari/atari_c51.py. 4. add C51 statement in tianshou/policy/__init__.py. 5. add C51 test in test/discrete/test_c51.py. 6. add C51 atari results in examples/atari/results/c51/. By running "python3 atari_c51.py --task "PongNoFrameskip-v4" --batch-size 64", get best_result': '20.50 ± 0.50', in epoch 9. By running "python3 atari_c51.py --task "BreakoutNoFrameskip-v4" --n-step 1 --epoch 40", get best_reward: 407.400000 ± 31.155096 in epoch 39.
166 lines
4.8 KiB
Python
166 lines
4.8 KiB
Python
import torch
|
|
import numpy as np
|
|
from torch import nn
|
|
import torch.nn.functional as F
|
|
from typing import Any, Dict, Tuple, Union, Optional, Sequence
|
|
|
|
from tianshou.data import to_torch
|
|
|
|
|
|
class Actor(nn.Module):
|
|
"""Simple actor network with MLP.
|
|
|
|
For advanced usage (how to customize the network), please refer to
|
|
:ref:`build_the_network`.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
preprocess_net: nn.Module,
|
|
action_shape: Sequence[int],
|
|
hidden_layer_size: int = 128,
|
|
softmax_output: bool = True,
|
|
) -> None:
|
|
super().__init__()
|
|
self.preprocess = preprocess_net
|
|
self.last = nn.Linear(hidden_layer_size, np.prod(action_shape))
|
|
self.softmax_output = softmax_output
|
|
|
|
def forward(
|
|
self,
|
|
s: Union[np.ndarray, torch.Tensor],
|
|
state: Optional[Any] = None,
|
|
info: Dict[str, Any] = {},
|
|
) -> Tuple[torch.Tensor, Any]:
|
|
r"""Mapping: s -> Q(s, \*)."""
|
|
logits, h = self.preprocess(s, state)
|
|
logits = self.last(logits)
|
|
if self.softmax_output:
|
|
logits = F.softmax(logits, dim=-1)
|
|
return logits, h
|
|
|
|
|
|
class Critic(nn.Module):
|
|
"""Simple critic network with MLP.
|
|
|
|
For advanced usage (how to customize the network), please refer to
|
|
:ref:`build_the_network`.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
preprocess_net: nn.Module,
|
|
hidden_layer_size: int = 128,
|
|
last_size: int = 1
|
|
) -> None:
|
|
super().__init__()
|
|
self.preprocess = preprocess_net
|
|
self.last = nn.Linear(hidden_layer_size, last_size)
|
|
|
|
def forward(
|
|
self, s: Union[np.ndarray, torch.Tensor], **kwargs: Any
|
|
) -> torch.Tensor:
|
|
"""Mapping: s -> V(s)."""
|
|
logits, h = self.preprocess(s, state=kwargs.get("state", None))
|
|
logits = self.last(logits)
|
|
return logits
|
|
|
|
|
|
class DQN(nn.Module):
|
|
"""Reference: Human-level control through deep reinforcement learning.
|
|
|
|
For advanced usage (how to customize the network), please refer to
|
|
:ref:`build_the_network`.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
c: int,
|
|
h: int,
|
|
w: int,
|
|
action_shape: Sequence[int],
|
|
device: Union[str, int, torch.device] = "cpu",
|
|
) -> None:
|
|
super().__init__()
|
|
self.device = device
|
|
|
|
def conv2d_size_out(
|
|
size: int, kernel_size: int = 5, stride: int = 2
|
|
) -> int:
|
|
return (size - (kernel_size - 1) - 1) // stride + 1
|
|
|
|
def conv2d_layers_size_out(
|
|
size: int,
|
|
kernel_size_1: int = 8,
|
|
stride_1: int = 4,
|
|
kernel_size_2: int = 4,
|
|
stride_2: int = 2,
|
|
kernel_size_3: int = 3,
|
|
stride_3: int = 1,
|
|
) -> int:
|
|
size = conv2d_size_out(size, kernel_size_1, stride_1)
|
|
size = conv2d_size_out(size, kernel_size_2, stride_2)
|
|
size = conv2d_size_out(size, kernel_size_3, stride_3)
|
|
return size
|
|
|
|
convw = conv2d_layers_size_out(w)
|
|
convh = conv2d_layers_size_out(h)
|
|
linear_input_size = convw * convh * 64
|
|
|
|
self.net = nn.Sequential(
|
|
nn.Conv2d(c, 32, kernel_size=8, stride=4),
|
|
nn.ReLU(inplace=True),
|
|
nn.Conv2d(32, 64, kernel_size=4, stride=2),
|
|
nn.ReLU(inplace=True),
|
|
nn.Conv2d(64, 64, kernel_size=3, stride=1),
|
|
nn.ReLU(inplace=True),
|
|
nn.Flatten(),
|
|
nn.Linear(linear_input_size, 512),
|
|
nn.ReLU(inplace=True),
|
|
nn.Linear(512, np.prod(action_shape)),
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
x: Union[np.ndarray, torch.Tensor],
|
|
state: Optional[Any] = None,
|
|
info: Dict[str, Any] = {},
|
|
) -> Tuple[torch.Tensor, Any]:
|
|
r"""Mapping: x -> Q(x, \*)."""
|
|
if not isinstance(x, torch.Tensor):
|
|
x = to_torch(x, device=self.device, dtype=torch.float32)
|
|
return self.net(x), state
|
|
|
|
|
|
class C51(DQN):
|
|
"""Reference: A distributional perspective on reinforcement learning.
|
|
|
|
For advanced usage (how to customize the network), please refer to
|
|
:ref:`build_the_network`.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
c: int,
|
|
h: int,
|
|
w: int,
|
|
action_shape: Sequence[int],
|
|
num_atoms: int = 51,
|
|
device: Union[str, int, torch.device] = "cpu",
|
|
) -> None:
|
|
super().__init__(c, h, w, [np.prod(action_shape) * num_atoms], device)
|
|
self.action_shape = action_shape
|
|
self.num_atoms = num_atoms
|
|
|
|
def forward(
|
|
self,
|
|
x: Union[np.ndarray, torch.Tensor],
|
|
state: Optional[Any] = None,
|
|
info: Dict[str, Any] = {},
|
|
) -> Tuple[torch.Tensor, Any]:
|
|
r"""Mapping: x -> Z(x, \*)."""
|
|
x, state = super().forward(x)
|
|
x = x.view(-1, self.num_atoms).softmax(dim=-1)
|
|
x = x.view(-1, np.prod(self.action_shape), self.num_atoms)
|
|
return x, state
|