208 lines
8.1 KiB
Python
208 lines
8.1 KiB
Python
import time
|
|
import torch
|
|
import numpy as np
|
|
from copy import deepcopy
|
|
|
|
from tianshou.env import BaseVectorEnv
|
|
from tianshou.data import Batch, ReplayBuffer
|
|
from tianshou.utils import MovAvg
|
|
|
|
|
|
class Collector(object):
|
|
"""docstring for Collector"""
|
|
|
|
def __init__(self, policy, env, buffer=ReplayBuffer(20000), stat_size=100):
|
|
super().__init__()
|
|
self.env = env
|
|
self.env_num = 1
|
|
self.collect_step = 0
|
|
self.collect_episode = 0
|
|
self.buffer = buffer
|
|
self.policy = policy
|
|
self.process_fn = policy.process_fn
|
|
self._multi_env = isinstance(env, BaseVectorEnv)
|
|
self._multi_buf = False # True if buf is a list
|
|
# need multiple cache buffers only if storing in one buffer
|
|
self._cached_buf = []
|
|
if self._multi_env:
|
|
self.env_num = len(env)
|
|
if isinstance(self.buffer, list):
|
|
assert len(self.buffer) == self.env_num,\
|
|
'The number of data buffer does not match the number of '\
|
|
'input env.'
|
|
self._multi_buf = True
|
|
elif isinstance(self.buffer, ReplayBuffer):
|
|
self._cached_buf = [
|
|
deepcopy(buffer) for _ in range(self.env_num)]
|
|
else:
|
|
raise TypeError('The buffer in data collector is invalid!')
|
|
self.reset_env()
|
|
self.reset_buffer()
|
|
# state over batch is either a list, an np.ndarray, or a torch.Tensor
|
|
self.state = None
|
|
self.step_speed = MovAvg(stat_size)
|
|
self.episode_speed = MovAvg(stat_size)
|
|
|
|
def reset_buffer(self):
|
|
if self._multi_buf:
|
|
for b in self.buffer:
|
|
b.reset()
|
|
else:
|
|
self.buffer.reset()
|
|
|
|
def reset_env(self):
|
|
self._obs = self.env.reset()
|
|
self._act = self._rew = self._done = self._info = None
|
|
if self._multi_env:
|
|
self.reward = np.zeros(self.env_num)
|
|
self.length = np.zeros(self.env_num)
|
|
else:
|
|
self.reward, self.length = 0, 0
|
|
for b in self._cached_buf:
|
|
b.reset()
|
|
|
|
def seed(self, seed=None):
|
|
if hasattr(self.env, 'seed'):
|
|
self.env.seed(seed)
|
|
|
|
def render(self, **kwargs):
|
|
if hasattr(self.env, 'render'):
|
|
self.env.render(**kwargs)
|
|
|
|
def close(self):
|
|
if hasattr(self.env, 'close'):
|
|
self.env.close()
|
|
|
|
def _make_batch(self, data):
|
|
if isinstance(data, np.ndarray):
|
|
return data[None]
|
|
else:
|
|
return [data]
|
|
|
|
def collect(self, n_step=0, n_episode=0, render=0):
|
|
start_time = time.time()
|
|
assert sum([(n_step > 0), (n_episode > 0)]) == 1,\
|
|
"One and only one collection number specification permitted!"
|
|
cur_step = 0
|
|
cur_episode = np.zeros(self.env_num) if self._multi_env else 0
|
|
reward_sum = 0
|
|
length_sum = 0
|
|
while True:
|
|
if self._multi_env:
|
|
batch_data = Batch(
|
|
obs=self._obs, act=self._act, rew=self._rew,
|
|
done=self._done, obs_next=None, info=self._info)
|
|
else:
|
|
batch_data = Batch(
|
|
obs=self._make_batch(self._obs),
|
|
act=self._make_batch(self._act),
|
|
rew=self._make_batch(self._rew),
|
|
done=self._make_batch(self._done),
|
|
obs_next=None,
|
|
info=self._make_batch(self._info))
|
|
result = self.policy(batch_data, self.state)
|
|
self.state = result.state if hasattr(result, 'state') else None
|
|
if isinstance(result.act, torch.Tensor):
|
|
self._act = result.act.detach().cpu().numpy()
|
|
else:
|
|
self._act = np.array(result.act)
|
|
obs_next, self._rew, self._done, self._info = self.env.step(
|
|
self._act if self._multi_env else self._act[0])
|
|
if render > 0:
|
|
self.env.render()
|
|
time.sleep(render)
|
|
self.length += 1
|
|
self.reward += self._rew
|
|
if self._multi_env:
|
|
for i in range(self.env_num):
|
|
if not self.env.is_reset_after_done()\
|
|
and cur_episode[i] > 0:
|
|
continue
|
|
data = {
|
|
'obs': self._obs[i], 'act': self._act[i],
|
|
'rew': self._rew[i], 'done': self._done[i],
|
|
'obs_next': obs_next[i], 'info': self._info[i]}
|
|
if self._cached_buf:
|
|
self._cached_buf[i].add(**data)
|
|
elif self._multi_buf:
|
|
self.buffer[i].add(**data)
|
|
cur_step += 1
|
|
else:
|
|
self.buffer.add(**data)
|
|
cur_step += 1
|
|
if self._done[i]:
|
|
cur_episode[i] += 1
|
|
reward_sum += self.reward[i]
|
|
length_sum += self.length[i]
|
|
self.reward[i], self.length[i] = 0, 0
|
|
if self._cached_buf:
|
|
self.buffer.update(self._cached_buf[i])
|
|
cur_step += len(self._cached_buf[i])
|
|
self._cached_buf[i].reset()
|
|
if isinstance(self.state, list):
|
|
self.state[i] = None
|
|
elif self.state is not None:
|
|
if isinstance(self.state[i], dict):
|
|
self.state[i] = {}
|
|
else:
|
|
self.state[i] = self.state[i] * 0
|
|
if isinstance(self.state, torch.Tensor):
|
|
# remove ref count in pytorch (?)
|
|
self.state = self.state.detach()
|
|
if n_episode > 0 and cur_episode.sum() >= n_episode:
|
|
break
|
|
else:
|
|
self.buffer.add(
|
|
self._obs, self._act[0], self._rew,
|
|
self._done, obs_next, self._info)
|
|
cur_step += 1
|
|
if self._done:
|
|
cur_episode += 1
|
|
reward_sum += self.reward
|
|
length_sum += self.length
|
|
self.reward, self.length = 0, 0
|
|
self.state = None
|
|
self._obs = self.env.reset()
|
|
if n_episode > 0 and cur_episode >= n_episode:
|
|
break
|
|
if n_step > 0 and cur_step >= n_step:
|
|
break
|
|
self._obs = obs_next
|
|
self._obs = obs_next
|
|
if self._multi_env:
|
|
cur_episode = sum(cur_episode)
|
|
duration = time.time() - start_time
|
|
self.step_speed.add(cur_step / duration)
|
|
self.episode_speed.add(cur_episode / duration)
|
|
self.collect_step += cur_step
|
|
self.collect_episode += cur_episode
|
|
return {
|
|
'n/ep': cur_episode,
|
|
'n/st': cur_step,
|
|
'speed/st': self.step_speed.get(),
|
|
'speed/ep': self.episode_speed.get(),
|
|
'rew': reward_sum / cur_episode,
|
|
'len': length_sum / cur_episode,
|
|
}
|
|
|
|
def sample(self, batch_size):
|
|
if self._multi_buf:
|
|
if batch_size > 0:
|
|
lens = [len(b) for b in self.buffer]
|
|
total = sum(lens)
|
|
batch_index = np.random.choice(
|
|
total, batch_size, p=np.array(lens) / total)
|
|
else:
|
|
batch_index = np.array([])
|
|
batch_data = Batch()
|
|
for i, b in enumerate(self.buffer):
|
|
cur_batch = (batch_index == i).sum()
|
|
if batch_size and cur_batch or batch_size <= 0:
|
|
batch, indice = b.sample(cur_batch)
|
|
batch = self.process_fn(batch, b, indice)
|
|
batch_data.append(batch)
|
|
else:
|
|
batch_data, indice = self.buffer.sample(batch_size)
|
|
batch_data = self.process_fn(batch_data, self.buffer, indice)
|
|
return batch_data
|