2020-03-19 17:23:46 +08:00

52 lines
1.8 KiB
Python

import torch
from torch import nn
import torch.nn.functional as F
from tianshou.data import Batch
from tianshou.policy import PGPolicy
class A2CPolicy(PGPolicy):
"""docstring for A2CPolicy"""
def __init__(self, actor, critic, optim,
dist_fn=torch.distributions.Categorical,
discount_factor=0.99, vf_coef=.5, entropy_coef=.01,
max_grad_norm=None):
super().__init__(None, optim, dist_fn, discount_factor)
self.actor = actor
self.critic = critic
self._w_value = vf_coef
self._w_entropy = entropy_coef
self._grad_norm = max_grad_norm
def __call__(self, batch, state=None):
logits, h = self.actor(batch.obs, state=state, info=batch.info)
logits = F.softmax(logits, dim=1)
dist = self.dist_fn(logits)
act = dist.sample()
return Batch(logits=logits, act=act, state=h, dist=dist)
def learn(self, batch, batch_size=None):
losses = []
for b in batch.split(batch_size):
self.optim.zero_grad()
result = self(b)
dist = result.dist
v = self.critic(b.obs)
a = torch.tensor(b.act, device=dist.logits.device)
r = torch.tensor(b.returns, device=dist.logits.device)
actor_loss = -(dist.log_prob(a) * (r - v).detach()).mean()
critic_loss = F.mse_loss(r[:, None], v)
entropy_loss = dist.entropy().mean()
loss = actor_loss \
+ self._w_value * critic_loss \
- self._w_entropy * entropy_loss
loss.backward()
if self._grad_norm:
nn.utils.clip_grad_norm_(
self.model.parameters(), max_norm=self._grad_norm)
self.optim.step()
losses.append(loss.detach().cpu().numpy())
return {'loss': losses}