267 lines
9.6 KiB
Python
267 lines
9.6 KiB
Python
import argparse
|
|
import datetime
|
|
import os
|
|
import pprint
|
|
import sys
|
|
|
|
import numpy as np
|
|
import torch
|
|
from atari_network import DQN
|
|
from atari_wrapper import make_atari_env
|
|
|
|
from tianshou.data import Collector, VectorReplayBuffer
|
|
from tianshou.highlevel.logger import LoggerFactoryDefault
|
|
from tianshou.policy import DQNPolicy
|
|
from tianshou.policy.base import BasePolicy
|
|
from tianshou.policy.modelbased.icm import ICMPolicy
|
|
from tianshou.trainer import OffpolicyTrainer
|
|
from tianshou.utils.net.discrete import IntrinsicCuriosityModule
|
|
|
|
|
|
def get_args() -> argparse.Namespace:
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--task", type=str, default="PongNoFrameskip-v4")
|
|
parser.add_argument("--seed", type=int, default=0)
|
|
parser.add_argument("--scale-obs", type=int, default=0)
|
|
parser.add_argument("--eps-test", type=float, default=0.005)
|
|
parser.add_argument("--eps-train", type=float, default=1.0)
|
|
parser.add_argument("--eps-train-final", type=float, default=0.05)
|
|
parser.add_argument("--buffer-size", type=int, default=100000)
|
|
parser.add_argument("--lr", type=float, default=0.0001)
|
|
parser.add_argument("--gamma", type=float, default=0.99)
|
|
parser.add_argument("--n-step", type=int, default=3)
|
|
parser.add_argument("--target-update-freq", type=int, default=500)
|
|
parser.add_argument("--epoch", type=int, default=100)
|
|
parser.add_argument("--step-per-epoch", type=int, default=100000)
|
|
parser.add_argument("--step-per-collect", type=int, default=10)
|
|
parser.add_argument("--update-per-step", type=float, default=0.1)
|
|
parser.add_argument("--batch-size", type=int, default=32)
|
|
parser.add_argument("--training-num", type=int, default=10)
|
|
parser.add_argument("--test-num", type=int, default=10)
|
|
parser.add_argument("--logdir", type=str, default="log")
|
|
parser.add_argument("--render", type=float, default=0.0)
|
|
parser.add_argument(
|
|
"--device",
|
|
type=str,
|
|
default="cuda" if torch.cuda.is_available() else "cpu",
|
|
)
|
|
parser.add_argument("--frames-stack", type=int, default=4)
|
|
parser.add_argument("--resume-path", type=str, default=None)
|
|
parser.add_argument("--resume-id", type=str, default=None)
|
|
parser.add_argument(
|
|
"--logger",
|
|
type=str,
|
|
default="tensorboard",
|
|
choices=["tensorboard", "wandb"],
|
|
)
|
|
parser.add_argument("--wandb-project", type=str, default="atari.benchmark")
|
|
parser.add_argument(
|
|
"--watch",
|
|
default=False,
|
|
action="store_true",
|
|
help="watch the play of pre-trained policy only",
|
|
)
|
|
parser.add_argument("--save-buffer-name", type=str, default=None)
|
|
parser.add_argument(
|
|
"--icm-lr-scale",
|
|
type=float,
|
|
default=0.0,
|
|
help="use intrinsic curiosity module with this lr scale",
|
|
)
|
|
parser.add_argument(
|
|
"--icm-reward-scale",
|
|
type=float,
|
|
default=0.01,
|
|
help="scaling factor for intrinsic curiosity reward",
|
|
)
|
|
parser.add_argument(
|
|
"--icm-forward-loss-weight",
|
|
type=float,
|
|
default=0.2,
|
|
help="weight for the forward model loss in ICM",
|
|
)
|
|
return parser.parse_args()
|
|
|
|
|
|
def main(args: argparse.Namespace = get_args()) -> None:
|
|
env, train_envs, test_envs = make_atari_env(
|
|
args.task,
|
|
args.seed,
|
|
args.training_num,
|
|
args.test_num,
|
|
scale=args.scale_obs,
|
|
frame_stack=args.frames_stack,
|
|
)
|
|
args.state_shape = env.observation_space.shape or env.observation_space.n
|
|
args.action_shape = env.action_space.shape or env.action_space.n
|
|
# should be N_FRAMES x H x W
|
|
print("Observations shape:", args.state_shape)
|
|
print("Actions shape:", args.action_shape)
|
|
# seed
|
|
np.random.seed(args.seed)
|
|
torch.manual_seed(args.seed)
|
|
# define model
|
|
net = DQN(*args.state_shape, args.action_shape, args.device).to(args.device)
|
|
optim = torch.optim.Adam(net.parameters(), lr=args.lr)
|
|
# define policy
|
|
policy: DQNPolicy | ICMPolicy
|
|
policy = DQNPolicy(
|
|
model=net,
|
|
optim=optim,
|
|
action_space=env.action_space,
|
|
discount_factor=args.gamma,
|
|
estimation_step=args.n_step,
|
|
target_update_freq=args.target_update_freq,
|
|
)
|
|
if args.icm_lr_scale > 0:
|
|
feature_net = DQN(*args.state_shape, args.action_shape, args.device, features_only=True)
|
|
action_dim = np.prod(args.action_shape)
|
|
feature_dim = feature_net.output_dim
|
|
icm_net = IntrinsicCuriosityModule(
|
|
feature_net.net,
|
|
feature_dim,
|
|
action_dim,
|
|
hidden_sizes=[512],
|
|
device=args.device,
|
|
)
|
|
icm_optim = torch.optim.Adam(icm_net.parameters(), lr=args.lr)
|
|
policy = ICMPolicy(
|
|
policy=policy,
|
|
model=icm_net,
|
|
optim=icm_optim,
|
|
action_space=env.action_space,
|
|
lr_scale=args.icm_lr_scale,
|
|
reward_scale=args.icm_reward_scale,
|
|
forward_loss_weight=args.icm_forward_loss_weight,
|
|
).to(args.device)
|
|
# load a previous policy
|
|
if args.resume_path:
|
|
policy.load_state_dict(torch.load(args.resume_path, map_location=args.device))
|
|
print("Loaded agent from: ", args.resume_path)
|
|
# replay buffer: `save_last_obs` and `stack_num` can be removed together
|
|
# when you have enough RAM
|
|
buffer = VectorReplayBuffer(
|
|
args.buffer_size,
|
|
buffer_num=len(train_envs),
|
|
ignore_obs_next=True,
|
|
save_only_last_obs=True,
|
|
stack_num=args.frames_stack,
|
|
)
|
|
# collector
|
|
train_collector = Collector(policy, train_envs, buffer, exploration_noise=True)
|
|
test_collector = Collector(policy, test_envs, exploration_noise=True)
|
|
|
|
# log
|
|
now = datetime.datetime.now().strftime("%y%m%d-%H%M%S")
|
|
args.algo_name = "dqn_icm" if args.icm_lr_scale > 0 else "dqn"
|
|
log_name = os.path.join(args.task, args.algo_name, str(args.seed), now)
|
|
log_path = os.path.join(args.logdir, log_name)
|
|
|
|
# logger
|
|
logger_factory = LoggerFactoryDefault()
|
|
if args.logger == "wandb":
|
|
logger_factory.logger_type = "wandb"
|
|
logger_factory.wandb_project = args.wandb_project
|
|
else:
|
|
logger_factory.logger_type = "tensorboard"
|
|
|
|
logger = logger_factory.create_logger(
|
|
log_dir=log_path,
|
|
experiment_name=log_name,
|
|
run_id=args.resume_id,
|
|
config_dict=vars(args),
|
|
)
|
|
|
|
def save_best_fn(policy: BasePolicy) -> None:
|
|
torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth"))
|
|
|
|
def stop_fn(mean_rewards: float) -> bool:
|
|
if env.spec.reward_threshold:
|
|
return mean_rewards >= env.spec.reward_threshold
|
|
if "Pong" in args.task:
|
|
return mean_rewards >= 20
|
|
return False
|
|
|
|
def train_fn(epoch: int, env_step: int) -> None:
|
|
# nature DQN setting, linear decay in the first 1M steps
|
|
if env_step <= 1e6:
|
|
eps = args.eps_train - env_step / 1e6 * (args.eps_train - args.eps_train_final)
|
|
else:
|
|
eps = args.eps_train_final
|
|
policy.set_eps(eps)
|
|
if env_step % 1000 == 0:
|
|
logger.write("train/env_step", env_step, {"train/eps": eps})
|
|
|
|
def test_fn(epoch: int, env_step: int | None) -> None:
|
|
policy.set_eps(args.eps_test)
|
|
|
|
def save_checkpoint_fn(epoch: int, env_step: int, gradient_step: int) -> str:
|
|
# see also: https://pytorch.org/tutorials/beginner/saving_loading_models.html
|
|
ckpt_path = os.path.join(log_path, f"checkpoint_{epoch}.pth")
|
|
torch.save({"model": policy.state_dict()}, ckpt_path)
|
|
return ckpt_path
|
|
|
|
# watch agent's performance
|
|
def watch() -> None:
|
|
print("Setup test envs ...")
|
|
policy.set_eps(args.eps_test)
|
|
test_envs.seed(args.seed)
|
|
if args.save_buffer_name:
|
|
print(f"Generate buffer with size {args.buffer_size}")
|
|
buffer = VectorReplayBuffer(
|
|
args.buffer_size,
|
|
buffer_num=len(test_envs),
|
|
ignore_obs_next=True,
|
|
save_only_last_obs=True,
|
|
stack_num=args.frames_stack,
|
|
)
|
|
collector = Collector(policy, test_envs, buffer, exploration_noise=True)
|
|
result = collector.collect(n_step=args.buffer_size, eval_mode=True)
|
|
print(f"Save buffer into {args.save_buffer_name}")
|
|
# Unfortunately, pickle will cause oom with 1M buffer size
|
|
buffer.save_hdf5(args.save_buffer_name)
|
|
else:
|
|
print("Testing agent ...")
|
|
test_collector.reset()
|
|
result = test_collector.collect(
|
|
n_episode=args.test_num,
|
|
render=args.render,
|
|
eval_mode=True,
|
|
)
|
|
result.pprint_asdict()
|
|
|
|
if args.watch:
|
|
watch()
|
|
sys.exit(0)
|
|
|
|
# test train_collector and start filling replay buffer
|
|
train_collector.reset()
|
|
train_collector.collect(n_step=args.batch_size * args.training_num)
|
|
# trainer
|
|
result = OffpolicyTrainer(
|
|
policy=policy,
|
|
train_collector=train_collector,
|
|
test_collector=test_collector,
|
|
max_epoch=args.epoch,
|
|
step_per_epoch=args.step_per_epoch,
|
|
step_per_collect=args.step_per_collect,
|
|
episode_per_test=args.test_num,
|
|
batch_size=args.batch_size,
|
|
train_fn=train_fn,
|
|
test_fn=test_fn,
|
|
stop_fn=stop_fn,
|
|
save_best_fn=save_best_fn,
|
|
logger=logger,
|
|
update_per_step=args.update_per_step,
|
|
test_in_train=False,
|
|
resume_from_log=args.resume_id is not None,
|
|
save_checkpoint_fn=save_checkpoint_fn,
|
|
).run()
|
|
|
|
pprint.pprint(result)
|
|
watch()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main(get_args())
|