Dominik Jain ca4dad1139 BaseTrainer: Refactoring
New method training_step, which
    * collects training data (method _collect_training_data)
    * performs "test in train" (method _test_in_train)
    * performs policy update
  The old method named train_step performed only the first two points
  and was now split into two separate methods
2024-05-03 10:12:35 +02:00

676 lines
26 KiB
Python

import logging
import time
from abc import ABC, abstractmethod
from collections import defaultdict, deque
from collections.abc import Callable
from dataclasses import asdict
from typing import Optional, Tuple
import numpy as np
import tqdm
from tianshou.data import (
AsyncCollector,
CollectStats,
EpochStats,
InfoStats,
ReplayBuffer,
SequenceSummaryStats,
)
from tianshou.data.collector import BaseCollector, CollectStatsBase
from tianshou.policy import BasePolicy
from tianshou.policy.base import TrainingStats
from tianshou.trainer.utils import gather_info, test_episode
from tianshou.utils import (
BaseLogger,
DummyTqdm,
LazyLogger,
MovAvg,
tqdm_config,
)
from tianshou.utils.logging import set_numerical_fields_to_precision
log = logging.getLogger(__name__)
class BaseTrainer(ABC):
"""An iterator base class for trainers.
Returns an iterator that yields a 3-tuple (epoch, stats, info) of train results
on every epoch.
:param policy: an instance of the :class:`~tianshou.policy.BasePolicy` class.
:param batch_size: the batch size of sample data, which is going to feed in
the policy network. If None, will use the whole buffer in each gradient step.
:param train_collector: the collector used for training.
:param test_collector: the collector used for testing. If it's None,
then no testing will be performed.
:param buffer: the replay buffer used for off-policy algorithms or for pre-training.
If a policy overrides the ``process_buffer`` method, the replay buffer will
be pre-processed before training.
:param max_epoch: the maximum number of epochs for training. The training
process might be finished before reaching ``max_epoch`` if ``stop_fn``
is set.
:param step_per_epoch: the number of transitions collected per epoch.
:param repeat_per_collect: the number of repeat time for policy learning,
for example, set it to 2 means the policy needs to learn each given batch
data twice. Only used in on-policy algorithms
:param episode_per_test: the number of episodes for one policy evaluation.
:param update_per_step: only used in off-policy algorithms.
How many gradient steps to perform per step in the environment
(i.e., per sample added to the buffer).
:param step_per_collect: the number of transitions the collector would
collect before the network update, i.e., trainer will collect
"step_per_collect" transitions and do some policy network update repeatedly
in each epoch.
:param episode_per_collect: the number of episodes the collector would
collect before the network update, i.e., trainer will collect
"episode_per_collect" episodes and do some policy network update repeatedly
in each epoch.
:param train_fn: a hook called at the beginning of training in each
epoch. It can be used to perform custom additional operations, with the
signature ``f(num_epoch: int, step_idx: int) -> None``.
:param test_fn: a hook called at the beginning of testing in each
epoch. It can be used to perform custom additional operations, with the
signature ``f(num_epoch: int, step_idx: int) -> None``.
:param save_best_fn: a hook called when the undiscounted average mean
reward in evaluation phase gets better, with the signature
``f(policy: BasePolicy) -> None``.
:param save_checkpoint_fn: a function to save training process and
return the saved checkpoint path, with the signature ``f(epoch: int,
env_step: int, gradient_step: int) -> str``; you can save whatever you want.
:param resume_from_log: resume env_step/gradient_step and other metadata
from existing tensorboard log.
:param stop_fn: a function with signature ``f(mean_rewards: float) ->
bool``, receives the average undiscounted returns of the testing result,
returns a boolean which indicates whether reaching the goal.
:param reward_metric: a function with signature
``f(rewards: np.ndarray with shape (num_episode, agent_num)) -> np.ndarray
with shape (num_episode,)``, used in multi-agent RL. We need to return a
single scalar for each episode's result to monitor training in the
multi-agent RL setting. This function specifies what is the desired metric,
e.g., the reward of agent 1 or the average reward over all agents.
:param logger: A logger that logs statistics during
training/testing/updating. To not log anything, keep the default logger.
:param verbose: whether to print status information to stdout.
If set to False, status information will still be logged (provided that
logging is enabled via the `logging` module).
:param show_progress: whether to display a progress bar when training.
:param test_in_train: whether to test in the training phase.
"""
__doc__: str
@staticmethod
def gen_doc(learning_type: str) -> str:
"""Document string for subclass trainer."""
step_means = f'The "step" in {learning_type} trainer means '
if learning_type != "offline":
step_means += "an environment step (a.k.a. transition)."
else: # offline
step_means += "a gradient step."
trainer_name = learning_type.capitalize() + "Trainer"
return f"""An iterator class for {learning_type} trainer procedure.
Returns an iterator that yields a 3-tuple (epoch, stats, info) of
train results on every epoch.
{step_means}
Example usage:
::
trainer = {trainer_name}(...)
for epoch, epoch_stat, info in trainer:
print("Epoch:", epoch)
print(epoch_stat)
print(info)
do_something_with_policy()
query_something_about_policy()
make_a_plot_with(epoch_stat)
display(info)
- epoch int: the epoch number
- epoch_stat dict: a large collection of metrics of the current epoch
- info dict: result returned from :func:`~tianshou.trainer.gather_info`
You can even iterate on several trainers at the same time:
::
trainer1 = {trainer_name}(...)
trainer2 = {trainer_name}(...)
for result1, result2, ... in zip(trainer1, trainer2, ...):
compare_results(result1, result2, ...)
"""
def __init__(
self,
policy: BasePolicy,
max_epoch: int,
batch_size: int | None,
train_collector: BaseCollector | None = None,
test_collector: BaseCollector | None = None,
buffer: ReplayBuffer | None = None,
step_per_epoch: int | None = None,
repeat_per_collect: int | None = None,
episode_per_test: int | None = None,
update_per_step: float = 1.0,
step_per_collect: int | None = None,
episode_per_collect: int | None = None,
train_fn: Callable[[int, int], None] | None = None,
test_fn: Callable[[int, int | None], None] | None = None,
stop_fn: Callable[[float], bool] | None = None,
save_best_fn: Callable[[BasePolicy], None] | None = None,
save_checkpoint_fn: Callable[[int, int, int], str] | None = None,
resume_from_log: bool = False,
reward_metric: Callable[[np.ndarray], np.ndarray] | None = None,
logger: BaseLogger = LazyLogger(),
verbose: bool = True,
show_progress: bool = True,
test_in_train: bool = True,
):
self.policy = policy
if buffer is not None:
buffer = policy.process_buffer(buffer)
self.buffer = buffer
self.train_collector = train_collector
self.test_collector = test_collector
self.logger = logger
self.start_time = time.time()
self.stat: defaultdict[str, MovAvg] = defaultdict(MovAvg)
self.best_reward = 0.0
self.best_reward_std = 0.0
self.start_epoch = 0
# This is only used for logging but creeps into the implementations
# of the trainers. I believe it would be better to remove
self._gradient_step = 0
self.env_step = 0
self.policy_update_time = 0.0
self.max_epoch = max_epoch
self.step_per_epoch = step_per_epoch
# either on of these two
self.step_per_collect = step_per_collect
self.episode_per_collect = episode_per_collect
self.update_per_step = update_per_step
self.repeat_per_collect = repeat_per_collect
self.episode_per_test = episode_per_test
self.batch_size = batch_size
self.train_fn = train_fn
self.test_fn = test_fn
self.stop_fn = stop_fn
self.save_best_fn = save_best_fn
self.save_checkpoint_fn = save_checkpoint_fn
self.reward_metric = reward_metric
self.verbose = verbose
self.show_progress = show_progress
self.test_in_train = test_in_train
self.resume_from_log = resume_from_log
self.is_run = False
self.last_rew, self.last_len = 0.0, 0.0
self.epoch = self.start_epoch
self.best_epoch = self.start_epoch
self.stop_fn_flag = False
self.iter_num = 0
def _reset_collectors(self, reset_buffer: bool = False) -> None:
if self.train_collector is not None:
self.train_collector.reset(reset_buffer=reset_buffer)
if self.test_collector is not None:
self.test_collector.reset(reset_buffer=reset_buffer)
def reset(self, reset_collectors: bool = True, reset_buffer: bool = False) -> None:
"""Initialize or reset the instance to yield a new iterator from zero."""
self.is_run = False
self.env_step = 0
if self.resume_from_log:
(
self.start_epoch,
self.env_step,
self._gradient_step,
) = self.logger.restore_data()
self.last_rew, self.last_len = 0.0, 0.0
self.start_time = time.time()
if reset_collectors:
self._reset_collectors(reset_buffer=reset_buffer)
if self.train_collector is not None and (
self.train_collector.policy != self.policy or self.test_collector is None
):
self.test_in_train = False
if self.test_collector is not None:
assert self.episode_per_test is not None
assert not isinstance(self.test_collector, AsyncCollector) # Issue 700
test_result = test_episode(
self.test_collector,
self.test_fn,
self.start_epoch,
self.episode_per_test,
self.logger,
self.env_step,
self.reward_metric,
)
assert test_result.returns_stat is not None # for mypy
self.best_epoch = self.start_epoch
self.best_reward, self.best_reward_std = (
test_result.returns_stat.mean,
test_result.returns_stat.std,
)
if self.save_best_fn:
self.save_best_fn(self.policy)
self.epoch = self.start_epoch
self.stop_fn_flag = False
self.iter_num = 0
def __iter__(self): # type: ignore
self.reset(reset_collectors=True, reset_buffer=False)
return self
def __next__(self) -> EpochStats:
"""Perform one epoch (both train and eval)."""
self.epoch += 1
self.iter_num += 1
if self.iter_num > 1:
# iterator exhaustion check
if self.epoch > self.max_epoch:
raise StopIteration
# exit flag 1, when stop_fn succeeds in train_step or test_step
if self.stop_fn_flag:
raise StopIteration
progress = tqdm.tqdm if self.show_progress else DummyTqdm
# perform n step_per_epoch
with progress(total=self.step_per_epoch, desc=f"Epoch #{self.epoch}", **tqdm_config) as t:
train_stat: CollectStatsBase
while t.n < t.total and not self.stop_fn_flag:
train_stat, update_stat, self.stop_fn_flag = self.training_step()
if isinstance(train_stat, CollectStats):
pbar_data_dict = {
"env_step": str(self.env_step),
"rew": f"{self.last_rew:.2f}",
"len": str(int(self.last_len)),
"n/ep": str(train_stat.n_collected_episodes),
"n/st": str(train_stat.n_collected_steps),
}
t.update(train_stat.n_collected_steps)
else:
pbar_data_dict = {}
t.update()
pbar_data_dict = set_numerical_fields_to_precision(pbar_data_dict)
pbar_data_dict["gradient_step"] = str(self._gradient_step)
t.set_postfix(**pbar_data_dict)
if self.stop_fn_flag:
break
if t.n <= t.total and not self.stop_fn_flag:
t.update()
# for offline RL
if self.train_collector is None:
assert self.buffer is not None
batch_size = self.batch_size or len(self.buffer)
self.env_step = self._gradient_step * batch_size
test_stat = None
if not self.stop_fn_flag:
self.logger.save_data(
self.epoch,
self.env_step,
self._gradient_step,
self.save_checkpoint_fn,
)
# test
if self.test_collector is not None:
test_stat, self.stop_fn_flag = self.test_step()
info_stat = gather_info(
start_time=self.start_time,
policy_update_time=self.policy_update_time,
gradient_step=self._gradient_step,
best_reward=self.best_reward,
best_reward_std=self.best_reward_std,
train_collector=self.train_collector,
test_collector=self.test_collector,
)
self.logger.log_info_data(asdict(info_stat), self.epoch)
# in case trainer is used with run(), epoch_stat will not be returned
epoch_stat: EpochStats = EpochStats(
epoch=self.epoch,
train_collect_stat=train_stat,
test_collect_stat=test_stat,
training_stat=update_stat,
info_stat=info_stat,
)
return epoch_stat
def test_step(self) -> tuple[CollectStats, bool]:
"""Perform one testing step."""
assert self.episode_per_test is not None
assert self.test_collector is not None
stop_fn_flag = False
test_stat = test_episode(
self.test_collector,
self.test_fn,
self.epoch,
self.episode_per_test,
self.logger,
self.env_step,
self.reward_metric,
)
assert test_stat.returns_stat is not None # for mypy
rew, rew_std = test_stat.returns_stat.mean, test_stat.returns_stat.std
if self.best_epoch < 0 or self.best_reward < rew:
self.best_epoch = self.epoch
self.best_reward = float(rew)
self.best_reward_std = rew_std
if self.save_best_fn:
self.save_best_fn(self.policy)
log_msg = (
f"Epoch #{self.epoch}: test_reward: {rew:.6f} ± {rew_std:.6f},"
f" best_reward: {self.best_reward:.6f} ± "
f"{self.best_reward_std:.6f} in #{self.best_epoch}"
)
log.info(log_msg)
if self.verbose:
print(log_msg, flush=True)
if self.stop_fn and self.stop_fn(self.best_reward):
stop_fn_flag = True
return test_stat, stop_fn_flag
def training_step(self) -> Tuple[CollectStatsBase, Optional[TrainingStats], bool]:
should_stop_training = False
if self.train_collector is not None:
collect_stats = self._collect_training_data()
should_stop_training = self._test_in_train(collect_stats)
else:
collect_stats = CollectStatsBase(
n_collected_episodes=len(self.buffer),
)
if not should_stop_training:
training_stats = self.policy_update_fn(collect_stats)
else:
training_stats = None
return collect_stats, training_stats, should_stop_training
def _collect_training_data(self) -> CollectStats:
"""Performs training data collection
:return: the data collection stats
"""
assert self.episode_per_test is not None
assert self.train_collector is not None
if self.train_fn:
self.train_fn(self.epoch, self.env_step)
collect_stats = self.train_collector.collect(
n_step=self.step_per_collect,
n_episode=self.episode_per_collect,
)
self.env_step += collect_stats.n_collected_steps
if collect_stats.n_collected_episodes > 0:
assert collect_stats.returns_stat is not None # for mypy
assert collect_stats.lens_stat is not None # for mypy
self.last_rew = collect_stats.returns_stat.mean
self.last_len = collect_stats.lens_stat.mean
if self.reward_metric: # TODO: move inside collector
rew = self.reward_metric(collect_stats.returns)
collect_stats.returns = rew
collect_stats.returns_stat = SequenceSummaryStats.from_sequence(rew)
self.logger.log_train_data(asdict(collect_stats), self.env_step)
return collect_stats
def _test_in_train(self, collect_stats: CollectStats) -> bool:
"""
If test_in_train and stop_fn are set, will compute the stop_fn on the mean return of the training data.
Then, if the stop_fn is True there, will collect test data also compute the stop_fn of the mean return
on it.
Finally, if the latter is also True, will set should_stop_training to True.
:param collect_stats: the data collection stats
:return: flag indicating whether to stop training
"""
should_stop_training = False
if (
collect_stats.n_collected_episodes > 0
and self.test_in_train
and self.stop_fn
and self.stop_fn(collect_stats.returns_stat.mean) # type: ignore
):
assert self.test_collector is not None
test_result = test_episode(
self.test_collector,
self.test_fn,
self.epoch,
self.episode_per_test,
self.logger,
self.env_step,
)
assert test_result.returns_stat is not None # for mypy
if self.stop_fn(test_result.returns_stat.mean):
should_stop_training = True
self.best_reward = test_result.returns_stat.mean
self.best_reward_std = test_result.returns_stat.std
return should_stop_training
# TODO: move moving average computation and logging into its own logger
# TODO: maybe think about a command line logger instead of always printing data dict
def _update_moving_avg_stats_and_log_update_data(self, update_stat: TrainingStats) -> None:
"""Log losses, update moving average stats, and also modify the smoothed_loss in update_stat."""
cur_losses_dict = update_stat.get_loss_stats_dict()
update_stat.smoothed_loss = self._update_moving_avg_stats_and_get_averaged_data(
cur_losses_dict,
)
self.logger.log_update_data(asdict(update_stat), self._gradient_step)
# TODO: seems convoluted, there should be a better way of dealing with the moving average stats
def _update_moving_avg_stats_and_get_averaged_data(
self,
data: dict[str, float],
) -> dict[str, float]:
"""Add entries to the moving average object in the trainer and retrieve the averaged results.
:param data: any entries to be tracked in the moving average object.
:return: A dictionary containing the averaged values of the tracked entries.
"""
smoothed_data = {}
for key, loss_item in data.items():
self.stat[key].add(loss_item)
smoothed_data[key] = self.stat[key].get()
return smoothed_data
@abstractmethod
def policy_update_fn(
self,
collect_stats: CollectStatsBase,
) -> TrainingStats:
"""Policy update function for different trainer implementation.
:param collect_stats: provides info about the most recent collection. In the offline case, this will contain
stats of the whole dataset
"""
def run(self, reset_prior_to_run: bool = True) -> InfoStats:
"""Consume iterator.
See itertools - recipes. Use functions that consume iterators at C speed
(feed the entire iterator into a zero-length deque).
"""
if reset_prior_to_run:
self.reset()
try:
self.is_run = True
deque(self, maxlen=0) # feed the entire iterator into a zero-length deque
info = gather_info(
start_time=self.start_time,
policy_update_time=self.policy_update_time,
gradient_step=self._gradient_step,
best_reward=self.best_reward,
best_reward_std=self.best_reward_std,
train_collector=self.train_collector,
test_collector=self.test_collector,
)
finally:
self.is_run = False
return info
def _sample_and_update(self, buffer: ReplayBuffer) -> TrainingStats:
"""Sample a mini-batch, perform one gradient step, and update the _gradient_step counter."""
self._gradient_step += 1
# Note: since sample_size=batch_size, this will perform
# exactly one gradient step. This is why we don't need to calculate the
# number of gradient steps, like in the on-policy case.
update_stat = self.policy.update(sample_size=self.batch_size, buffer=buffer)
self._update_moving_avg_stats_and_log_update_data(update_stat)
return update_stat
class OfflineTrainer(BaseTrainer):
"""Offline trainer, samples mini-batches from buffer and passes them to update.
Uses a buffer directly and usually does not have a collector.
"""
# for mypy
assert isinstance(BaseTrainer.__doc__, str)
__doc__ += BaseTrainer.gen_doc("offline") + "\n".join(BaseTrainer.__doc__.split("\n")[1:])
def policy_update_fn(
self,
collect_stats: CollectStatsBase | None = None,
) -> TrainingStats:
"""Perform one off-line policy update."""
assert self.buffer
update_stat = self._sample_and_update(self.buffer)
# logging
self.policy_update_time += update_stat.train_time
return update_stat
class OffpolicyTrainer(BaseTrainer):
"""Offpolicy trainer, samples mini-batches from buffer and passes them to update.
Note that with this trainer, it is expected that the policy's `learn` method
does not perform additional mini-batching but just updates params from the received
mini-batch.
"""
# for mypy
assert isinstance(BaseTrainer.__doc__, str)
__doc__ += BaseTrainer.gen_doc("offpolicy") + "\n".join(BaseTrainer.__doc__.split("\n")[1:])
def policy_update_fn(
self,
# TODO: this is the only implementation where collect_stats is actually needed. Maybe change interface?
collect_stats: CollectStatsBase,
) -> TrainingStats:
"""Perform `update_per_step * n_collected_steps` gradient steps by sampling mini-batches from the buffer.
:param collect_stats: the :class:`~TrainingStats` instance returned by the last gradient step. Some values
in it will be replaced by their moving averages.
"""
assert self.train_collector is not None
n_collected_steps = collect_stats.n_collected_steps
n_gradient_steps = round(self.update_per_step * n_collected_steps)
if n_gradient_steps == 0:
raise ValueError(
f"n_gradient_steps is 0, n_collected_steps={n_collected_steps}, "
f"update_per_step={self.update_per_step}",
)
for _ in range(n_gradient_steps):
update_stat = self._sample_and_update(self.train_collector.buffer)
# logging
self.policy_update_time += update_stat.train_time
# TODO: only the last update_stat is returned, should be improved
return update_stat
class OnpolicyTrainer(BaseTrainer):
"""On-policy trainer, passes the entire buffer to .update and resets it after.
Note that it is expected that the learn method of a policy will perform
batching when using this trainer.
"""
# for mypy
assert isinstance(BaseTrainer.__doc__, str)
__doc__ = BaseTrainer.gen_doc("onpolicy") + "\n".join(BaseTrainer.__doc__.split("\n")[1:])
def policy_update_fn(
self,
result: CollectStatsBase | None = None,
) -> TrainingStats:
"""Perform one on-policy update by passing the entire buffer to the policy's update method."""
assert self.train_collector is not None
training_stat = self.policy.update(
sample_size=0,
buffer=self.train_collector.buffer,
# Note: sample_size is None, so the whole buffer is used for the update.
# The kwargs are in the end passed to the .learn method, which uses
# batch_size to iterate through the buffer in mini-batches
# Off-policy algos typically don't use the batch_size kwarg at all
batch_size=self.batch_size,
repeat=self.repeat_per_collect,
)
# just for logging, no functional role
self.policy_update_time += training_stat.train_time
# TODO: remove the gradient step counting in trainers? Doesn't seem like
# it's important and it adds complexity
self._gradient_step += 1
if self.batch_size is None:
self._gradient_step += 1
elif self.batch_size > 0:
self._gradient_step += int((len(self.train_collector.buffer) - 0.1) // self.batch_size)
# Note: this is the main difference to the off-policy trainer!
# The second difference is that batches of data are sampled without replacement
# during training, whereas in off-policy or offline training, the batches are
# sampled with replacement (and potentially custom prioritization).
self.train_collector.reset_buffer(keep_statistics=True)
# The step is the number of mini-batches used for the update, so essentially
self._update_moving_avg_stats_and_log_update_data(training_stat)
return training_stat