2023-08-09 10:27:18 -07:00

771 lines
31 KiB
Python

import pprint
import warnings
from collections.abc import Collection
from copy import deepcopy
from numbers import Number
from typing import Any, Dict, Iterable, Iterator, List, Optional, Sequence, Union
import numpy as np
import torch
IndexType = Union[slice, int, np.ndarray, List[int]]
def _is_batch_set(obj: Any) -> bool:
# Batch set is a list/tuple of dict/Batch objects,
# or 1-D np.ndarray with object type,
# where each element is a dict/Batch object
if isinstance(obj, np.ndarray): # most often case
# "for element in obj" will just unpack the first dimension,
# but obj.tolist() will flatten ndarray of objects
# so do not use obj.tolist()
if obj.shape == ():
return False
return obj.dtype == object and \
all(isinstance(element, (dict, Batch)) for element in obj)
elif isinstance(obj, (list, tuple)):
if len(obj) > 0 and all(isinstance(element, (dict, Batch)) for element in obj):
return True
return False
def _is_scalar(value: Any) -> bool:
# check if the value is a scalar
# 1. python bool object, number object: isinstance(value, Number)
# 2. numpy scalar: isinstance(value, np.generic)
# 3. python object rather than dict / Batch / tensor
# the check of dict / Batch is omitted because this only checks a value.
# a dict / Batch will eventually check their values
if isinstance(value, torch.Tensor):
return value.numel() == 1 and not value.shape
else:
# np.asanyarray will cause dead loop in some cases
return np.isscalar(value)
def _is_number(value: Any) -> bool:
# isinstance(value, Number) checks 1, 1.0, np.int(1), np.float(1.0), etc.
# isinstance(value, np.nummber) checks np.int32(1), np.float64(1.0), etc.
# isinstance(value, np.bool_) checks np.bool_(True), etc.
# similar to np.isscalar but np.isscalar('st') returns True
return isinstance(value, (Number, np.number, np.bool_))
def _to_array_with_correct_type(obj: Any) -> np.ndarray:
if isinstance(obj, np.ndarray) and \
issubclass(obj.dtype.type, (np.bool_, np.number)):
return obj # most often case
# convert the value to np.ndarray
# convert to object obj type if neither bool nor number
# raises an exception if array's elements are tensors themselves
try:
obj_array = np.asanyarray(obj)
except ValueError:
obj_array = np.asanyarray(obj, dtype=object)
if not issubclass(obj_array.dtype.type, (np.bool_, np.number)):
obj_array = obj_array.astype(object)
if obj_array.dtype == object:
# scalar ndarray with object obj type is very annoying
# a=np.array([np.array({}, dtype=object), np.array({}, dtype=object)])
# a is not array([{}, {}], dtype=object), and a[0]={} results in
# something very strange:
# array([{}, array({}, dtype=object)], dtype=object)
if not obj_array.shape:
obj_array = obj_array.item(0)
elif all(isinstance(arr, np.ndarray) for arr in obj_array.reshape(-1)):
return obj_array # various length, np.array([[1], [2, 3], [4, 5, 6]])
elif any(isinstance(arr, torch.Tensor) for arr in obj_array.reshape(-1)):
raise ValueError("Numpy arrays of tensors are not supported yet.")
return obj_array
def _create_value(
inst: Any,
size: int,
stack: bool = True,
) -> Union["Batch", np.ndarray, torch.Tensor]:
"""Create empty place-holders accroding to inst's shape.
:param bool stack: whether to stack or to concatenate. E.g. if inst has shape of
(3, 5), size = 10, stack=True returns an np.ndarry with shape of (10, 3, 5),
otherwise (10, 5)
"""
has_shape = isinstance(inst, (np.ndarray, torch.Tensor))
is_scalar = _is_scalar(inst)
if not stack and is_scalar:
# should never hit since it has already checked in Batch.cat_ , here we do not
# consider scalar types, following the behavior of numpy which does not support
# concatenation of zero-dimensional arrays (scalars)
raise TypeError(f"cannot concatenate with {inst} which is scalar")
if has_shape:
shape = (size, *inst.shape) if stack else (size, *inst.shape[1:])
if isinstance(inst, np.ndarray):
target_type = inst.dtype.type if issubclass(
inst.dtype.type, (np.bool_, np.number)
) else object
return np.full(
shape, fill_value=None if target_type == object else 0, dtype=target_type
)
elif isinstance(inst, torch.Tensor):
return torch.full(shape, fill_value=0, device=inst.device, dtype=inst.dtype)
elif isinstance(inst, (dict, Batch)):
zero_batch = Batch()
for key, val in inst.items():
zero_batch.__dict__[key] = _create_value(val, size, stack=stack)
return zero_batch
elif is_scalar:
return _create_value(np.asarray(inst), size, stack=stack)
else: # fall back to object
return np.array([None for _ in range(size)], object)
def _assert_type_keys(keys: Iterable[str]) -> None:
assert all(isinstance(key, str) for key in keys), \
f"keys should all be string, but got {keys}"
def _parse_value(obj: Any) -> Optional[Union["Batch", np.ndarray, torch.Tensor]]:
if isinstance(obj, Batch): # most often case
return obj
elif (isinstance(obj, np.ndarray) and
issubclass(obj.dtype.type, (np.bool_, np.number))) or \
isinstance(obj, torch.Tensor) or obj is None: # third often case
return obj
elif _is_number(obj): # second often case, but it is more time-consuming
return np.asanyarray(obj)
elif isinstance(obj, dict):
return Batch(obj)
else:
if not isinstance(obj, np.ndarray) and \
isinstance(obj, Collection) and len(obj) > 0 and \
all(isinstance(element, torch.Tensor) for element in obj):
try:
return torch.stack(obj) # type: ignore
except RuntimeError as exception:
raise TypeError(
"Batch does not support non-stackable iterable"
" of torch.Tensor as unique value yet."
) from exception
if _is_batch_set(obj):
obj = Batch(obj) # list of dict / Batch
else:
# None, scalar, normal obj list (main case)
# or an actual list of objects
try:
obj = _to_array_with_correct_type(obj)
except ValueError as exception:
raise TypeError(
"Batch does not support heterogeneous list/"
"tuple of tensors as unique value yet."
) from exception
return obj
def _alloc_by_keys_diff(
meta: "Batch", batch: "Batch", size: int, stack: bool = True
) -> None:
for key in batch.keys():
if key in meta.keys():
if isinstance(meta[key], Batch) and isinstance(batch[key], Batch):
_alloc_by_keys_diff(meta[key], batch[key], size, stack)
elif isinstance(meta[key], Batch) and meta[key].is_empty():
meta[key] = _create_value(batch[key], size, stack)
else:
meta[key] = _create_value(batch[key], size, stack)
class Batch:
"""The internal data structure in Tianshou.
Batch is a kind of supercharged array (of temporal data) stored individually in a
(recursive) dictionary of object that can be either numpy array, torch tensor, or
batch themselves. It is designed to make it extremely easily to access, manipulate
and set partial view of the heterogeneous data conveniently.
For a detailed description, please refer to :ref:`batch_concept`.
"""
def __init__(
self,
batch_dict: Optional[Union[dict, "Batch", Sequence[Union[dict, "Batch"]],
np.ndarray]] = None,
copy: bool = False,
**kwargs: Any,
) -> None:
if copy:
batch_dict = deepcopy(batch_dict)
if batch_dict is not None:
if isinstance(batch_dict, (dict, Batch)):
_assert_type_keys(batch_dict.keys())
for batch_key, obj in batch_dict.items():
self.__dict__[batch_key] = _parse_value(obj)
elif _is_batch_set(batch_dict):
self.stack_(batch_dict) # type: ignore
if len(kwargs) > 0:
self.__init__(kwargs, copy=copy) # type: ignore
def __setattr__(self, key: str, value: Any) -> None:
"""Set self.key = value."""
self.__dict__[key] = _parse_value(value)
def __getattr__(self, key: str) -> Any:
"""Return self.key. The "Any" return type is needed for mypy."""
return getattr(self.__dict__, key)
def __contains__(self, key: str) -> bool:
"""Return key in self."""
return key in self.__dict__
def __getstate__(self) -> Dict[str, Any]:
"""Pickling interface.
Only the actual data are serialized for both efficiency and simplicity.
"""
state = {}
for batch_key, obj in self.items():
if isinstance(obj, Batch):
obj = obj.__getstate__()
state[batch_key] = obj
return state
def __setstate__(self, state: Dict[str, Any]) -> None:
"""Unpickling interface.
At this point, self is an empty Batch instance that has not been
initialized, so it can safely be initialized by the pickle state.
"""
self.__init__(**state) # type: ignore
def __getitem__(self, index: Union[str, IndexType]) -> Any:
"""Return self[index]."""
if isinstance(index, str):
return self.__dict__[index]
batch_items = self.items()
if len(batch_items) > 0:
new_batch = Batch()
for batch_key, obj in batch_items:
if isinstance(obj, Batch) and obj.is_empty():
new_batch.__dict__[batch_key] = Batch()
else:
new_batch.__dict__[batch_key] = obj[index]
return new_batch
else:
raise IndexError("Cannot access item from empty Batch object.")
def __setitem__(self, index: Union[str, IndexType], value: Any) -> None:
"""Assign value to self[index]."""
value = _parse_value(value)
if isinstance(index, str):
self.__dict__[index] = value
return
if not isinstance(value, Batch):
raise ValueError(
"Batch does not supported tensor assignment. "
"Use a compatible Batch or dict instead."
)
if not set(value.keys()).issubset(self.__dict__.keys()):
raise ValueError("Creating keys is not supported by item assignment.")
for key, val in self.items():
try:
self.__dict__[key][index] = value[key]
except KeyError:
if isinstance(val, Batch):
self.__dict__[key][index] = Batch()
elif isinstance(val, torch.Tensor) or \
(isinstance(val, np.ndarray) and
issubclass(val.dtype.type, (np.bool_, np.number))):
self.__dict__[key][index] = 0
else:
self.__dict__[key][index] = None
def __iadd__(self, other: Union["Batch", Number, np.number]) -> "Batch":
"""Algebraic addition with another Batch instance in-place."""
if isinstance(other, Batch):
for (batch_key, obj), value in zip(
self.__dict__.items(), other.__dict__.values()
): # TODO are keys consistent?
if isinstance(obj, Batch) and obj.is_empty():
continue
else:
self.__dict__[batch_key] += value
return self
elif _is_number(other):
for batch_key, obj in self.items():
if isinstance(obj, Batch) and obj.is_empty():
continue
else:
self.__dict__[batch_key] += other
return self
else:
raise TypeError("Only addition of Batch or number is supported.")
def __add__(self, other: Union["Batch", Number, np.number]) -> "Batch":
"""Algebraic addition with another Batch instance out-of-place."""
return deepcopy(self).__iadd__(other)
def __imul__(self, value: Union[Number, np.number]) -> "Batch":
"""Algebraic multiplication with a scalar value in-place."""
assert _is_number(value), "Only multiplication by a number is supported."
for batch_key, obj in self.__dict__.items():
if isinstance(obj, Batch) and obj.is_empty():
continue
self.__dict__[batch_key] *= value
return self
def __mul__(self, value: Union[Number, np.number]) -> "Batch":
"""Algebraic multiplication with a scalar value out-of-place."""
return deepcopy(self).__imul__(value)
def __itruediv__(self, value: Union[Number, np.number]) -> "Batch":
"""Algebraic division with a scalar value in-place."""
assert _is_number(value), "Only division by a number is supported."
for batch_key, obj in self.__dict__.items():
if isinstance(obj, Batch) and obj.is_empty():
continue
self.__dict__[batch_key] /= value
return self
def __truediv__(self, value: Union[Number, np.number]) -> "Batch":
"""Algebraic division with a scalar value out-of-place."""
return deepcopy(self).__itruediv__(value)
def __repr__(self) -> str:
"""Return str(self)."""
self_str = self.__class__.__name__ + "(\n"
flag = False
for batch_key, obj in self.__dict__.items():
rpl = "\n" + " " * (6 + len(batch_key))
obj_name = pprint.pformat(obj).replace("\n", rpl)
self_str += f" {batch_key}: {obj_name},\n"
flag = True
if flag:
self_str += ")"
else:
self_str = self.__class__.__name__ + "()"
return self_str
def to_numpy(self) -> None:
"""Change all torch.Tensor to numpy.ndarray in-place."""
for batch_key, obj in self.items():
if isinstance(obj, torch.Tensor):
self.__dict__[batch_key] = obj.detach().cpu().numpy()
elif isinstance(obj, Batch):
obj.to_numpy()
def to_torch(
self,
dtype: Optional[torch.dtype] = None,
device: Union[str, int, torch.device] = "cpu",
) -> None:
"""Change all numpy.ndarray to torch.Tensor in-place."""
if not isinstance(device, torch.device):
device = torch.device(device)
for batch_key, obj in self.items():
if isinstance(obj, torch.Tensor):
if dtype is not None and obj.dtype != dtype or \
obj.device.type != device.type or \
device.index != obj.device.index:
if dtype is not None:
obj = obj.type(dtype)
self.__dict__[batch_key] = obj.to(device)
elif isinstance(obj, Batch):
obj.to_torch(dtype, device)
else:
# ndarray or scalar
if not isinstance(obj, np.ndarray):
obj = np.asanyarray(obj)
obj = torch.from_numpy(obj).to(device)
if dtype is not None:
obj = obj.type(dtype)
self.__dict__[batch_key] = obj
def __cat(self, batches: Sequence[Union[dict, "Batch"]], lens: List[int]) -> None:
"""Private method for Batch.cat_.
::
>>> a = Batch(a=np.random.randn(3, 4))
>>> x = Batch(a=a, b=np.random.randn(4, 4))
>>> y = Batch(a=Batch(a=Batch()), b=np.random.randn(4, 4))
If we want to concatenate x and y, we want to pad y.a.a with zeros.
Without ``lens`` as a hint, when we concatenate x.a and y.a, we would
not be able to know how to pad y.a. So ``Batch.cat_`` should compute
the ``lens`` to give ``Batch.__cat`` a hint.
::
>>> ans = Batch.cat([x, y])
>>> # this is equivalent to the following line
>>> ans = Batch(); ans.__cat([x, y], lens=[3, 4])
>>> # this lens is equal to [len(a), len(b)]
"""
# partial keys will be padded by zeros
# with the shape of [len, rest_shape]
sum_lens = [0]
for len_ in lens:
sum_lens.append(sum_lens[-1] + len_)
# collect non-empty keys
keys_map = [
set(
batch_key for batch_key, obj in batch.items()
if not (isinstance(obj, Batch) and obj.is_empty())
) for batch in batches
]
keys_shared = set.intersection(*keys_map)
values_shared = [[batch[key] for batch in batches] for key in keys_shared]
for key, shared_value in zip(keys_shared, values_shared):
if all(isinstance(element, (dict, Batch)) for element in shared_value):
batch_holder = Batch()
batch_holder.__cat(shared_value, lens=lens)
self.__dict__[key] = batch_holder
elif all(isinstance(element, torch.Tensor) for element in shared_value):
self.__dict__[key] = torch.cat(shared_value)
else:
# cat Batch(a=np.zeros((3, 4))) and Batch(a=Batch(b=Batch()))
# will fail here
shared_value = np.concatenate(shared_value)
self.__dict__[key] = _to_array_with_correct_type(shared_value)
keys_total = set.union(*[set(batch.keys()) for batch in batches])
keys_reserve_or_partial = set.difference(keys_total, keys_shared)
# keys that are reserved in all batches
keys_reserve = set.difference(keys_total, set.union(*keys_map))
# keys that occur only in some batches, but not all
keys_partial = keys_reserve_or_partial.difference(keys_reserve)
for key in keys_reserve:
# reserved keys
self.__dict__[key] = Batch()
for key in keys_partial:
for i, batch in enumerate(batches):
if key not in batch.__dict__:
continue
value = batch.get(key)
if isinstance(value, Batch) and value.is_empty():
continue
try:
self.__dict__[key][sum_lens[i]:sum_lens[i + 1]] = value
except KeyError:
self.__dict__[key] = \
_create_value(value, sum_lens[-1], stack=False)
self.__dict__[key][sum_lens[i]:sum_lens[i + 1]] = value
def cat_(self, batches: Union["Batch", Sequence[Union[dict, "Batch"]]]) -> None:
"""Concatenate a list of (or one) Batch objects into current batch."""
if isinstance(batches, Batch):
batches = [batches]
# check input format
batch_list = []
for batch in batches:
if isinstance(batch, dict):
if len(batch) > 0:
batch_list.append(Batch(batch))
elif isinstance(batch, Batch):
# x.is_empty() means that x is Batch() and should be ignored
if not batch.is_empty():
batch_list.append(batch)
else:
raise ValueError(f"Cannot concatenate {type(batch)} in Batch.cat_")
if len(batch_list) == 0:
return
batches = batch_list
try:
# x.is_empty(recurse=True) here means x is a nested empty batch
# like Batch(a=Batch), and we have to treat it as length zero and
# keep it.
lens = [
0 if batch.is_empty(recurse=True) else len(batch) for batch in batches
]
except TypeError as exception:
raise ValueError(
"Batch.cat_ meets an exception. Maybe because there is any "
f"scalar in {batches} but Batch.cat_ does not support the "
"concatenation of scalar."
) from exception
if not self.is_empty():
batches = [self] + list(batches)
lens = [0 if self.is_empty(recurse=True) else len(self)] + lens
self.__cat(batches, lens)
@staticmethod
def cat(batches: Sequence[Union[dict, "Batch"]]) -> "Batch":
"""Concatenate a list of Batch object into a single new batch.
For keys that are not shared across all batches, batches that do not
have these keys will be padded by zeros with appropriate shapes. E.g.
::
>>> a = Batch(a=np.zeros([3, 4]), common=Batch(c=np.zeros([3, 5])))
>>> b = Batch(b=np.zeros([4, 3]), common=Batch(c=np.zeros([4, 5])))
>>> c = Batch.cat([a, b])
>>> c.a.shape
(7, 4)
>>> c.b.shape
(7, 3)
>>> c.common.c.shape
(7, 5)
"""
batch = Batch()
batch.cat_(batches)
return batch
def stack_(self, batches: Sequence[Union[dict, "Batch"]], axis: int = 0) -> None:
"""Stack a list of Batch object into current batch."""
# check input format
batch_list = []
for batch in batches:
if isinstance(batch, dict):
if len(batch) > 0:
batch_list.append(Batch(batch))
elif isinstance(batch, Batch):
# x.is_empty() means that x is Batch() and should be ignored
if not batch.is_empty():
batch_list.append(batch)
else:
raise ValueError(f"Cannot concatenate {type(batch)} in Batch.stack_")
if len(batch_list) == 0:
return
batches = batch_list
if not self.is_empty():
batches = [self] + batches
# collect non-empty keys
keys_map = [
set(
batch_key for batch_key, obj in batch.items()
if not (isinstance(obj, Batch) and obj.is_empty())
) for batch in batches
]
keys_shared = set.intersection(*keys_map)
values_shared = [[batch[key] for batch in batches] for key in keys_shared]
for shared_key, value in zip(keys_shared, values_shared):
# second often
if all(isinstance(element, torch.Tensor) for element in value):
self.__dict__[shared_key] = torch.stack(value, axis)
# third often
elif all(isinstance(element, (Batch, dict)) for element in value):
self.__dict__[shared_key] = Batch.stack(value, axis)
else: # most often case is np.ndarray
try:
self.__dict__[shared_key] = \
_to_array_with_correct_type(np.stack(value, axis))
except ValueError:
warnings.warn(
"You are using tensors with different shape,"
" fallback to dtype=object by default."
)
self.__dict__[shared_key] = np.array(value, dtype=object)
# all the keys
keys_total = set.union(*[set(batch.keys()) for batch in batches])
# keys that are reserved in all batches
keys_reserve = set.difference(keys_total, set.union(*keys_map))
# keys that are either partial or reserved
keys_reserve_or_partial = set.difference(keys_total, keys_shared)
# keys that occur only in some batches, but not all
keys_partial = keys_reserve_or_partial.difference(keys_reserve)
if keys_partial and axis != 0:
raise ValueError(
f"Stack of Batch with non-shared keys {keys_partial} is only "
f"supported with axis=0, but got axis={axis}!"
)
for key in keys_reserve:
# reserved keys
self.__dict__[key] = Batch()
for key in keys_partial:
for i, batch in enumerate(batches):
if key not in batch.__dict__:
continue
value = batch.get(key)
if isinstance(value, Batch) and value.is_empty(): # type: ignore
continue # type: ignore
try:
self.__dict__[key][i] = value
except KeyError:
self.__dict__[key] = _create_value(value, len(batches))
self.__dict__[key][i] = value
@staticmethod
def stack(batches: Sequence[Union[dict, "Batch"]], axis: int = 0) -> "Batch":
"""Stack a list of Batch object into a single new batch.
For keys that are not shared across all batches, batches that do not
have these keys will be padded by zeros. E.g.
::
>>> a = Batch(a=np.zeros([4, 4]), common=Batch(c=np.zeros([4, 5])))
>>> b = Batch(b=np.zeros([4, 6]), common=Batch(c=np.zeros([4, 5])))
>>> c = Batch.stack([a, b])
>>> c.a.shape
(2, 4, 4)
>>> c.b.shape
(2, 4, 6)
>>> c.common.c.shape
(2, 4, 5)
.. note::
If there are keys that are not shared across all batches, ``stack``
with ``axis != 0`` is undefined, and will cause an exception.
"""
batch = Batch()
batch.stack_(batches, axis)
return batch
def empty_(self, index: Optional[Union[slice, IndexType]] = None) -> "Batch":
"""Return an empty Batch object with 0 or None filled.
If "index" is specified, it will only reset the specific indexed-data.
::
>>> data.empty_()
>>> print(data)
Batch(
a: array([[0., 0.],
[0., 0.]]),
b: array([None, None], dtype=object),
)
>>> b={'c': [2., 'st'], 'd': [1., 0.]}
>>> data = Batch(a=[False, True], b=b)
>>> data[0] = Batch.empty(data[1])
>>> data
Batch(
a: array([False, True]),
b: Batch(
c: array([None, 'st']),
d: array([0., 0.]),
),
)
"""
for batch_key, obj in self.items():
if isinstance(obj, torch.Tensor): # most often case
self.__dict__[batch_key][index] = 0
elif obj is None:
continue
elif isinstance(obj, np.ndarray):
if obj.dtype == object:
self.__dict__[batch_key][index] = None
else:
self.__dict__[batch_key][index] = 0
elif isinstance(obj, Batch):
self.__dict__[batch_key].empty_(index=index)
else: # scalar value
warnings.warn(
"You are calling Batch.empty on a NumPy scalar, "
"which may cause undefined behaviors."
)
if _is_number(obj):
self.__dict__[batch_key] = obj.__class__(0)
else:
self.__dict__[batch_key] = None
return self
@staticmethod
def empty(batch: "Batch", index: Optional[IndexType] = None) -> "Batch":
"""Return an empty Batch object with 0 or None filled.
The shape is the same as the given Batch.
"""
return deepcopy(batch).empty_(index)
def update(
self, batch: Optional[Union[dict, "Batch"]] = None, **kwargs: Any
) -> None:
"""Update this batch from another dict/Batch."""
if batch is None:
self.update(kwargs)
return
for batch_key, obj in batch.items():
self.__dict__[batch_key] = _parse_value(obj)
if kwargs:
self.update(kwargs)
def __len__(self) -> int:
"""Return len(self)."""
lens = []
for obj in self.__dict__.values():
if isinstance(obj, Batch) and obj.is_empty(recurse=True):
continue
elif hasattr(obj, "__len__") and (isinstance(obj, Batch) or obj.ndim > 0):
lens.append(len(obj))
else:
raise TypeError(f"Object {obj} in {self} has no len()")
if len(lens) == 0:
# empty batch has the shape of any, like the tensorflow '?' shape.
# So it has no length.
raise TypeError(f"Object {self} has no len()")
return min(lens)
def is_empty(self, recurse: bool = False) -> bool:
"""Test if a Batch is empty.
If ``recurse=True``, it further tests the values of the object; else
it only tests the existence of any key.
``b.is_empty(recurse=True)`` is mainly used to distinguish
``Batch(a=Batch(a=Batch()))`` and ``Batch(a=1)``. They both raise
exceptions when applied to ``len()``, but the former can be used in
``cat``, while the latter is a scalar and cannot be used in ``cat``.
Another usage is in ``__len__``, where we have to skip checking the
length of recursively empty Batch.
::
>>> Batch().is_empty()
True
>>> Batch(a=Batch(), b=Batch(c=Batch())).is_empty()
False
>>> Batch(a=Batch(), b=Batch(c=Batch())).is_empty(recurse=True)
True
>>> Batch(d=1).is_empty()
False
>>> Batch(a=np.float64(1.0)).is_empty()
False
"""
if len(self.__dict__) == 0:
return True
if not recurse:
return False
return all(
False if not isinstance(obj, Batch) else obj.is_empty(recurse=True)
for obj in self.values()
)
@property
def shape(self) -> List[int]:
"""Return self.shape."""
if self.is_empty():
return []
else:
data_shape = []
for obj in self.__dict__.values():
try:
data_shape.append(list(obj.shape))
except AttributeError:
data_shape.append([])
return list(map(min, zip(*data_shape))) if len(data_shape) > 1 \
else data_shape[0]
def split(self,
size: int,
shuffle: bool = True,
merge_last: bool = False) -> Iterator["Batch"]:
"""Split whole data into multiple small batches.
:param int size: divide the data batch with the given size, but one
batch if the length of the batch is smaller than "size".
:param bool shuffle: randomly shuffle the entire data batch if it is
True, otherwise remain in the same. Default to True.
:param bool merge_last: merge the last batch into the previous one.
Default to False.
"""
length = len(self)
assert 1 <= size # size can be greater than length, return whole batch
if shuffle:
indices = np.random.permutation(length)
else:
indices = np.arange(length)
merge_last = merge_last and length % size > 0
for idx in range(0, length, size):
if merge_last and idx + size + size >= length:
yield self[indices[idx:]]
break
yield self[indices[idx:idx + size]]