106 lines
		
	
	
		
			3.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			106 lines
		
	
	
		
			3.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#!/usr/bin/env python3
 | 
						|
 | 
						|
import os
 | 
						|
from collections.abc import Sequence
 | 
						|
 | 
						|
from jsonargparse import CLI
 | 
						|
 | 
						|
from examples.atari.atari_callbacks import (
 | 
						|
    TestEpochCallbackDQNSetEps,
 | 
						|
    TrainEpochCallbackNatureDQNEpsLinearDecay,
 | 
						|
)
 | 
						|
from examples.atari.atari_network import (
 | 
						|
    IntermediateModuleFactoryAtariDQN,
 | 
						|
)
 | 
						|
from examples.atari.atari_wrapper import AtariEnvFactory, AtariStopCallback
 | 
						|
from tianshou.highlevel.config import SamplingConfig
 | 
						|
from tianshou.highlevel.experiment import (
 | 
						|
    ExperimentConfig,
 | 
						|
    IQNExperimentBuilder,
 | 
						|
)
 | 
						|
from tianshou.highlevel.params.policy_params import IQNParams
 | 
						|
from tianshou.utils import logging
 | 
						|
from tianshou.utils.logging import datetime_tag
 | 
						|
 | 
						|
 | 
						|
def main(
 | 
						|
    experiment_config: ExperimentConfig,
 | 
						|
    task: str = "PongNoFrameskip-v4",
 | 
						|
    scale_obs: int = 0,
 | 
						|
    eps_test: float = 0.005,
 | 
						|
    eps_train: float = 1.0,
 | 
						|
    eps_train_final: float = 0.05,
 | 
						|
    buffer_size: int = 100000,
 | 
						|
    lr: float = 0.0001,
 | 
						|
    gamma: float = 0.99,
 | 
						|
    sample_size: int = 32,
 | 
						|
    online_sample_size: int = 8,
 | 
						|
    target_sample_size: int = 8,
 | 
						|
    num_cosines: int = 64,
 | 
						|
    hidden_sizes: Sequence[int] = (512,),
 | 
						|
    n_step: int = 3,
 | 
						|
    target_update_freq: int = 500,
 | 
						|
    epoch: int = 100,
 | 
						|
    step_per_epoch: int = 100000,
 | 
						|
    step_per_collect: int = 10,
 | 
						|
    update_per_step: float = 0.1,
 | 
						|
    batch_size: int = 32,
 | 
						|
    training_num: int = 10,
 | 
						|
    test_num: int = 10,
 | 
						|
    frames_stack: int = 4,
 | 
						|
    save_buffer_name: str | None = None,  # TODO support?
 | 
						|
):
 | 
						|
    log_name = os.path.join(task, "iqn", str(experiment_config.seed), datetime_tag())
 | 
						|
 | 
						|
    sampling_config = SamplingConfig(
 | 
						|
        num_epochs=epoch,
 | 
						|
        step_per_epoch=step_per_epoch,
 | 
						|
        batch_size=batch_size,
 | 
						|
        num_train_envs=training_num,
 | 
						|
        num_test_envs=test_num,
 | 
						|
        buffer_size=buffer_size,
 | 
						|
        step_per_collect=step_per_collect,
 | 
						|
        update_per_step=update_per_step,
 | 
						|
        repeat_per_collect=None,
 | 
						|
        replay_buffer_stack_num=frames_stack,
 | 
						|
        replay_buffer_ignore_obs_next=True,
 | 
						|
        replay_buffer_save_only_last_obs=True,
 | 
						|
    )
 | 
						|
 | 
						|
    env_factory = AtariEnvFactory(
 | 
						|
        task,
 | 
						|
        experiment_config.seed,
 | 
						|
        sampling_config,
 | 
						|
        frames_stack,
 | 
						|
        scale=scale_obs,
 | 
						|
    )
 | 
						|
 | 
						|
    experiment = (
 | 
						|
        IQNExperimentBuilder(env_factory, experiment_config, sampling_config)
 | 
						|
        .with_iqn_params(
 | 
						|
            IQNParams(
 | 
						|
                discount_factor=gamma,
 | 
						|
                estimation_step=n_step,
 | 
						|
                lr=lr,
 | 
						|
                sample_size=sample_size,
 | 
						|
                online_sample_size=online_sample_size,
 | 
						|
                target_update_freq=target_update_freq,
 | 
						|
                target_sample_size=target_sample_size,
 | 
						|
                hidden_sizes=hidden_sizes,
 | 
						|
                num_cosines=num_cosines,
 | 
						|
            ),
 | 
						|
        )
 | 
						|
        .with_preprocess_network_factory(IntermediateModuleFactoryAtariDQN(features_only=True))
 | 
						|
        .with_trainer_epoch_callback_train(
 | 
						|
            TrainEpochCallbackNatureDQNEpsLinearDecay(eps_train, eps_train_final),
 | 
						|
        )
 | 
						|
        .with_trainer_epoch_callback_test(TestEpochCallbackDQNSetEps(eps_test))
 | 
						|
        .with_trainer_stop_callback(AtariStopCallback(task))
 | 
						|
        .build()
 | 
						|
    )
 | 
						|
    experiment.run(log_name)
 | 
						|
 | 
						|
 | 
						|
if __name__ == "__main__":
 | 
						|
    logging.run_main(lambda: CLI(main))
 |