Tianshou/examples/box2d/bipedal_bdq.py
Michael Panchenko 600f4bbd55
Python 3.9, black + ruff formatting (#921)
Preparation for #914 and #920

Changes formatting to ruff and black. Remove python 3.8

## Additional Changes

- Removed flake8 dependencies
- Adjusted pre-commit. Now CI and Make use pre-commit, reducing the
duplication of linting calls
- Removed check-docstyle option (ruff is doing that)
- Merged format and lint. In CI the format-lint step fails if any
changes are done, so it fulfills the lint functionality.

---------

Co-authored-by: Jiayi Weng <jiayi@openai.com>
2023-08-25 14:40:56 -07:00

163 lines
5.9 KiB
Python

import argparse
import datetime
import os
import pprint
import gymnasium as gym
import numpy as np
import torch
from torch.utils.tensorboard import SummaryWriter
from tianshou.data import Collector, VectorReplayBuffer
from tianshou.env import ContinuousToDiscrete, SubprocVectorEnv
from tianshou.policy import BranchingDQNPolicy
from tianshou.trainer import OffpolicyTrainer
from tianshou.utils import TensorboardLogger
from tianshou.utils.net.common import BranchingNet
def get_args():
parser = argparse.ArgumentParser()
# task
parser.add_argument("--task", type=str, default="BipedalWalker-v3")
# network architecture
parser.add_argument("--common-hidden-sizes", type=int, nargs="*", default=[512, 256])
parser.add_argument("--action-hidden-sizes", type=int, nargs="*", default=[128])
parser.add_argument("--value-hidden-sizes", type=int, nargs="*", default=[128])
parser.add_argument("--action-per-branch", type=int, default=25)
# training hyperparameters
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--eps-test", type=float, default=0.0)
parser.add_argument("--eps-train", type=float, default=0.73)
parser.add_argument("--eps-decay", type=float, default=5e-6)
parser.add_argument("--buffer-size", type=int, default=100000)
parser.add_argument("--lr", type=float, default=1e-4)
parser.add_argument("--gamma", type=float, default=0.99)
parser.add_argument("--target-update-freq", type=int, default=1000)
parser.add_argument("--epoch", type=int, default=1000)
parser.add_argument("--step-per-epoch", type=int, default=80000)
parser.add_argument("--step-per-collect", type=int, default=16)
parser.add_argument("--update-per-step", type=float, default=0.0625)
parser.add_argument("--batch-size", type=int, default=512)
parser.add_argument("--training-num", type=int, default=20)
parser.add_argument("--test-num", type=int, default=10)
# other
parser.add_argument("--logdir", type=str, default="log")
parser.add_argument("--render", type=float, default=0.0)
parser.add_argument(
"--device",
type=str,
default="cuda" if torch.cuda.is_available() else "cpu",
)
return parser.parse_args()
def test_bdq(args=get_args()):
env = gym.make(args.task)
env = ContinuousToDiscrete(env, args.action_per_branch)
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
args.num_branches = (
args.action_shape if isinstance(args.action_shape, int) else args.action_shape[0]
)
print("Observations shape:", args.state_shape)
print("Num branches:", args.num_branches)
print("Actions per branch:", args.action_per_branch)
# train_envs = ContinuousToDiscrete(gym.make(args.task), args.action_per_branch)
# you can also use tianshou.env.SubprocVectorEnv
train_envs = SubprocVectorEnv(
[
lambda: ContinuousToDiscrete(gym.make(args.task), args.action_per_branch)
for _ in range(args.training_num)
],
)
# test_envs = ContinuousToDiscrete(gym.make(args.task), args.action_per_branch)
test_envs = SubprocVectorEnv(
[
lambda: ContinuousToDiscrete(gym.make(args.task), args.action_per_branch)
for _ in range(args.test_num)
],
)
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
train_envs.seed(args.seed)
test_envs.seed(args.seed)
# model
net = BranchingNet(
args.state_shape,
args.num_branches,
args.action_per_branch,
args.common_hidden_sizes,
args.value_hidden_sizes,
args.action_hidden_sizes,
device=args.device,
).to(args.device)
optim = torch.optim.Adam(net.parameters(), lr=args.lr)
policy = BranchingDQNPolicy(net, optim, args.gamma, target_update_freq=args.target_update_freq)
# collector
train_collector = Collector(
policy,
train_envs,
VectorReplayBuffer(args.buffer_size, len(train_envs)),
exploration_noise=True,
)
test_collector = Collector(policy, test_envs, exploration_noise=False)
# policy.set_eps(1)
train_collector.collect(n_step=args.batch_size * args.training_num)
# log
current_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
log_path = os.path.join(args.logdir, "bdq", args.task, current_time)
writer = SummaryWriter(log_path)
logger = TensorboardLogger(writer)
def save_best_fn(policy):
torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth"))
def stop_fn(mean_rewards):
return mean_rewards >= getattr(env.spec.reward_threshold)
def train_fn(epoch, env_step): # exp decay
eps = max(args.eps_train * (1 - args.eps_decay) ** env_step, args.eps_test)
policy.set_eps(eps)
def test_fn(epoch, env_step):
policy.set_eps(args.eps_test)
# trainer
result = OffpolicyTrainer(
policy=policy,
train_collector=train_collector,
test_collector=test_collector,
max_epoch=args.epoch,
step_per_epoch=args.step_per_epoch,
step_per_collect=args.step_per_collect,
episode_per_test=args.test_num,
batch_size=args.batch_size,
update_per_step=args.update_per_step,
# stop_fn=stop_fn,
train_fn=train_fn,
test_fn=test_fn,
save_best_fn=save_best_fn,
logger=logger,
).run()
# assert stop_fn(result["best_reward"])
if __name__ == "__main__":
pprint.pprint(result)
# Let's watch its performance!
policy.eval()
policy.set_eps(args.eps_test)
test_envs.seed(args.seed)
test_collector.reset()
result = test_collector.collect(n_episode=args.test_num, render=args.render)
rews, lens = result["rews"], result["lens"]
print(f"Final reward: {rews.mean()}, length: {lens.mean()}")
if __name__ == "__main__":
test_bdq(get_args())