Tianshou/examples/offline/d4rl_td3_bc.py
Michael Panchenko 600f4bbd55
Python 3.9, black + ruff formatting (#921)
Preparation for #914 and #920

Changes formatting to ruff and black. Remove python 3.8

## Additional Changes

- Removed flake8 dependencies
- Adjusted pre-commit. Now CI and Make use pre-commit, reducing the
duplication of linting calls
- Removed check-docstyle option (ruff is doing that)
- Merged format and lint. In CI the format-lint step fails if any
changes are done, so it fulfills the lint functionality.

---------

Co-authored-by: Jiayi Weng <jiayi@openai.com>
2023-08-25 14:40:56 -07:00

224 lines
7.6 KiB
Python

#!/usr/bin/env python3
import argparse
import datetime
import os
import pprint
import gymnasium as gym
import numpy as np
import torch
from torch.utils.tensorboard import SummaryWriter
from examples.offline.utils import load_buffer_d4rl, normalize_all_obs_in_replay_buffer
from tianshou.data import Collector
from tianshou.env import SubprocVectorEnv, VectorEnvNormObs
from tianshou.exploration import GaussianNoise
from tianshou.policy import TD3BCPolicy
from tianshou.trainer import OfflineTrainer
from tianshou.utils import TensorboardLogger, WandbLogger
from tianshou.utils.net.common import Net
from tianshou.utils.net.continuous import Actor, Critic
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--task", type=str, default="HalfCheetah-v2")
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--expert-data-task", type=str, default="halfcheetah-expert-v2")
parser.add_argument("--buffer-size", type=int, default=1000000)
parser.add_argument("--hidden-sizes", type=int, nargs="*", default=[256, 256])
parser.add_argument("--actor-lr", type=float, default=3e-4)
parser.add_argument("--critic-lr", type=float, default=3e-4)
parser.add_argument("--epoch", type=int, default=200)
parser.add_argument("--step-per-epoch", type=int, default=5000)
parser.add_argument("--n-step", type=int, default=3)
parser.add_argument("--batch-size", type=int, default=256)
parser.add_argument("--alpha", type=float, default=2.5)
parser.add_argument("--exploration-noise", type=float, default=0.1)
parser.add_argument("--policy-noise", type=float, default=0.2)
parser.add_argument("--noise-clip", type=float, default=0.5)
parser.add_argument("--update-actor-freq", type=int, default=2)
parser.add_argument("--tau", type=float, default=0.005)
parser.add_argument("--gamma", type=float, default=0.99)
parser.add_argument("--norm-obs", type=int, default=1)
parser.add_argument("--eval-freq", type=int, default=1)
parser.add_argument("--test-num", type=int, default=10)
parser.add_argument("--logdir", type=str, default="log")
parser.add_argument("--render", type=float, default=1 / 35)
parser.add_argument(
"--device",
type=str,
default="cuda" if torch.cuda.is_available() else "cpu",
)
parser.add_argument("--resume-path", type=str, default=None)
parser.add_argument("--resume-id", type=str, default=None)
parser.add_argument(
"--logger",
type=str,
default="tensorboard",
choices=["tensorboard", "wandb"],
)
parser.add_argument("--wandb-project", type=str, default="offline_d4rl.benchmark")
parser.add_argument(
"--watch",
default=False,
action="store_true",
help="watch the play of pre-trained policy only",
)
return parser.parse_args()
def test_td3_bc():
args = get_args()
env = gym.make(args.task)
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
args.max_action = env.action_space.high[0] # float
print("device:", args.device)
print("Observations shape:", args.state_shape)
print("Actions shape:", args.action_shape)
print("Action range:", np.min(env.action_space.low), np.max(env.action_space.high))
args.state_dim = args.state_shape[0]
args.action_dim = args.action_shape[0]
print("Max_action", args.max_action)
test_envs = SubprocVectorEnv([lambda: gym.make(args.task) for _ in range(args.test_num)])
if args.norm_obs:
test_envs = VectorEnvNormObs(test_envs, update_obs_rms=False)
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
test_envs.seed(args.seed)
# model
# actor network
net_a = Net(
args.state_shape,
hidden_sizes=args.hidden_sizes,
device=args.device,
)
actor = Actor(
net_a,
action_shape=args.action_shape,
max_action=args.max_action,
device=args.device,
).to(args.device)
actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
# critic network
net_c1 = Net(
args.state_shape,
args.action_shape,
hidden_sizes=args.hidden_sizes,
concat=True,
device=args.device,
)
net_c2 = Net(
args.state_shape,
args.action_shape,
hidden_sizes=args.hidden_sizes,
concat=True,
device=args.device,
)
critic1 = Critic(net_c1, device=args.device).to(args.device)
critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr)
critic2 = Critic(net_c2, device=args.device).to(args.device)
critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr)
policy = TD3BCPolicy(
actor,
actor_optim,
critic1,
critic1_optim,
critic2,
critic2_optim,
tau=args.tau,
gamma=args.gamma,
exploration_noise=GaussianNoise(sigma=args.exploration_noise),
policy_noise=args.policy_noise,
update_actor_freq=args.update_actor_freq,
noise_clip=args.noise_clip,
alpha=args.alpha,
estimation_step=args.n_step,
action_space=env.action_space,
)
# load a previous policy
if args.resume_path:
policy.load_state_dict(torch.load(args.resume_path, map_location=args.device))
print("Loaded agent from: ", args.resume_path)
# collector
test_collector = Collector(policy, test_envs)
# log
now = datetime.datetime.now().strftime("%y%m%d-%H%M%S")
args.algo_name = "td3_bc"
log_name = os.path.join(args.task, args.algo_name, str(args.seed), now)
log_path = os.path.join(args.logdir, log_name)
# logger
if args.logger == "wandb":
logger = WandbLogger(
save_interval=1,
name=log_name.replace(os.path.sep, "__"),
run_id=args.resume_id,
config=args,
project=args.wandb_project,
)
writer = SummaryWriter(log_path)
writer.add_text("args", str(args))
if args.logger == "tensorboard":
logger = TensorboardLogger(writer)
else: # wandb
logger.load(writer)
def save_best_fn(policy):
torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth"))
def watch():
if args.resume_path is None:
args.resume_path = os.path.join(log_path, "policy.pth")
policy.load_state_dict(torch.load(args.resume_path, map_location=torch.device("cpu")))
policy.eval()
collector = Collector(policy, env)
collector.collect(n_episode=1, render=1 / 35)
if not args.watch:
replay_buffer = load_buffer_d4rl(args.expert_data_task)
if args.norm_obs:
replay_buffer, obs_rms = normalize_all_obs_in_replay_buffer(replay_buffer)
test_envs.set_obs_rms(obs_rms)
# trainer
result = OfflineTrainer(
policy=policy,
buffer=replay_buffer,
test_collector=test_collector,
max_epoch=args.epoch,
step_per_epoch=args.step_per_epoch,
episode_per_test=args.test_num,
batch_size=args.batch_size,
save_best_fn=save_best_fn,
logger=logger,
).run()
pprint.pprint(result)
else:
watch()
# Let's watch its performance!
policy.eval()
test_envs.seed(args.seed)
test_collector.reset()
result = test_collector.collect(n_episode=args.test_num, render=args.render)
print(f"Final reward: {result['rews'].mean()}, length: {result['lens'].mean()}")
if __name__ == "__main__":
test_td3_bc()