Tianshou/examples/offline/d4rl_cql.py
Michael Panchenko b900fdf6f2
Remove kwargs in policy init (#950)
Closes #947 

This removes all kwargs from all policy constructors. While doing that,
I also improved several names and added a whole lot of TODOs.

## Functional changes:

1. Added possibility to pass None as `critic2` and `critic2_optim`. In
fact, the default behavior then should cover the absolute majority of
cases
2. Added a function called `clone_optimizer` as a temporary measure to
support passing `critic2_optim=None`

## Breaking changes:

1. `action_space` is no longer optional. In fact, it already was
non-optional, as there was a ValueError in BasePolicy.init. So now
several examples were fixed to reflect that
2. `reward_normalization` removed from DDPG and children. It was never
allowed to pass it as `True` there, an error would have been raised in
`compute_n_step_reward`. Now I removed it from the interface
3. renamed `critic1` and similar to `critic`, in order to have uniform
interfaces. Note that the `critic` in DDPG was optional for the sole
reason that child classes used `critic1`. I removed this optionality
(DDPG can't do anything with `critic=None`)
4. Several renamings of fields (mostly private to public, so backwards
compatible)

## Additional changes: 
1. Removed type and default declaration from docstring. This kind of
duplication is really not necessary
2. Policy constructors are now only called using named arguments, not a
fragile mixture of positional and named as before
5. Minor beautifications in typing and code 
6. Generally shortened docstrings and made them uniform across all
policies (hopefully)

## Comment:

With these changes, several problems in tianshou's inheritance hierarchy
become more apparent. I tried highlighting them for future work.

---------

Co-authored-by: Dominik Jain <d.jain@appliedai.de>
2023-10-08 08:57:03 -07:00

374 lines
11 KiB
Python

#!/usr/bin/env python3
import argparse
import datetime
import os
import pprint
import gymnasium as gym
import numpy as np
import torch
from torch.utils.tensorboard import SummaryWriter
from examples.offline.utils import load_buffer_d4rl
from tianshou.data import Collector
from tianshou.env import SubprocVectorEnv
from tianshou.policy import CQLPolicy
from tianshou.trainer import OfflineTrainer
from tianshou.utils import TensorboardLogger, WandbLogger
from tianshou.utils.net.common import Net
from tianshou.utils.net.continuous import ActorProb, Critic
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--task",
type=str,
default="Hopper-v2",
help="The name of the OpenAI Gym environment to train on.",
)
parser.add_argument(
"--seed",
type=int,
default=0,
help="The random seed to use.",
)
parser.add_argument(
"--expert-data-task",
type=str,
default="hopper-expert-v2",
help="The name of the OpenAI Gym environment to use for expert data collection.",
)
parser.add_argument(
"--buffer-size",
type=int,
default=1000000,
help="The size of the replay buffer.",
)
parser.add_argument(
"--hidden-sizes",
type=int,
nargs="*",
default=[256, 256],
help="The list of hidden sizes for the neural networks.",
)
parser.add_argument(
"--actor-lr",
type=float,
default=1e-4,
help="The learning rate for the actor network.",
)
parser.add_argument(
"--critic-lr",
type=float,
default=3e-4,
help="The learning rate for the critic network.",
)
parser.add_argument(
"--alpha",
type=float,
default=0.2,
help="The weight of the entropy term in the loss function.",
)
parser.add_argument(
"--auto-alpha",
default=True,
action="store_true",
help="Whether to use automatic entropy tuning.",
)
parser.add_argument(
"--alpha-lr",
type=float,
default=1e-4,
help="The learning rate for the entropy tuning.",
)
parser.add_argument(
"--cql-alpha-lr",
type=float,
default=3e-4,
help="The learning rate for the CQL entropy tuning.",
)
parser.add_argument(
"--start-timesteps",
type=int,
default=10000,
help="The number of timesteps before starting to train.",
)
parser.add_argument(
"--epoch",
type=int,
default=200,
help="The number of epochs to train for.",
)
parser.add_argument(
"--step-per-epoch",
type=int,
default=5000,
help="The number of steps per epoch.",
)
parser.add_argument(
"--n-step",
type=int,
default=3,
help="The number of steps to use for N-step TD learning.",
)
parser.add_argument(
"--batch-size",
type=int,
default=256,
help="The batch size for training.",
)
parser.add_argument(
"--tau",
type=float,
default=0.005,
help="The soft target update coefficient.",
)
parser.add_argument(
"--temperature",
type=float,
default=1.0,
help="The temperature for the Boltzmann policy.",
)
parser.add_argument(
"--cql-weight",
type=float,
default=1.0,
help="The weight of the CQL loss term.",
)
parser.add_argument(
"--with-lagrange",
type=bool,
default=True,
help="Whether to use the Lagrange multiplier for CQL.",
)
parser.add_argument(
"--calibrated",
type=bool,
default=True,
help="Whether to use calibration for CQL.",
)
parser.add_argument(
"--lagrange-threshold",
type=float,
default=10.0,
help="The Lagrange multiplier threshold for CQL.",
)
parser.add_argument("--gamma", type=float, default=0.99, help="The discount factor")
parser.add_argument(
"--eval-freq",
type=int,
default=1,
help="The frequency of evaluation.",
)
parser.add_argument(
"--test-num",
type=int,
default=10,
help="The number of episodes to evaluate for.",
)
parser.add_argument(
"--logdir",
type=str,
default="log",
help="The directory to save logs to.",
)
parser.add_argument(
"--render",
type=float,
default=1 / 35,
help="The frequency of rendering the environment.",
)
parser.add_argument(
"--device",
type=str,
default="cuda" if torch.cuda.is_available() else "cpu",
help="The device to train on (cpu or cuda).",
)
parser.add_argument(
"--resume-path",
type=str,
default=None,
help="The path to the checkpoint to resume from.",
)
parser.add_argument(
"--resume-id",
type=str,
default=None,
help="The ID of the checkpoint to resume from.",
)
parser.add_argument(
"--logger",
type=str,
default="tensorboard",
choices=["tensorboard", "wandb"],
)
parser.add_argument("--wandb-project", type=str, default="offline_d4rl.benchmark")
parser.add_argument(
"--watch",
default=False,
action="store_true",
help="watch the play of pre-trained policy only",
)
return parser.parse_args()
def test_cql():
args = get_args()
env = gym.make(args.task)
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
args.max_action = env.action_space.high[0] # float
print("device:", args.device)
print("Observations shape:", args.state_shape)
print("Actions shape:", args.action_shape)
print("Action range:", np.min(env.action_space.low), np.max(env.action_space.high))
args.state_dim = args.state_shape[0]
args.action_dim = args.action_shape[0]
print("Max_action", args.max_action)
# test_envs = gym.make(args.task)
test_envs = SubprocVectorEnv([lambda: gym.make(args.task) for _ in range(args.test_num)])
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
test_envs.seed(args.seed)
# model
# actor network
net_a = Net(
args.state_shape,
args.action_shape,
hidden_sizes=args.hidden_sizes,
device=args.device,
)
actor = ActorProb(
net_a,
action_shape=args.action_shape,
device=args.device,
unbounded=True,
conditioned_sigma=True,
).to(args.device)
actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
# critic network
net_c1 = Net(
args.state_shape,
args.action_shape,
hidden_sizes=args.hidden_sizes,
concat=True,
device=args.device,
)
net_c2 = Net(
args.state_shape,
args.action_shape,
hidden_sizes=args.hidden_sizes,
concat=True,
device=args.device,
)
critic = Critic(net_c1, device=args.device).to(args.device)
critic_optim = torch.optim.Adam(critic.parameters(), lr=args.critic_lr)
critic2 = Critic(net_c2, device=args.device).to(args.device)
critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr)
if args.auto_alpha:
target_entropy = -np.prod(env.action_space.shape)
log_alpha = torch.zeros(1, requires_grad=True, device=args.device)
alpha_optim = torch.optim.Adam([log_alpha], lr=args.alpha_lr)
args.alpha = (target_entropy, log_alpha, alpha_optim)
policy = CQLPolicy(
actor=actor,
actor_optim=actor_optim,
critic=critic,
critic_optim=critic_optim,
action_space=env.action_space,
critic2=critic2,
critic2_optim=critic2_optim,
calibrated=args.calibrated,
cql_alpha_lr=args.cql_alpha_lr,
cql_weight=args.cql_weight,
tau=args.tau,
gamma=args.gamma,
alpha=args.alpha,
temperature=args.temperature,
with_lagrange=args.with_lagrange,
lagrange_threshold=args.lagrange_threshold,
min_action=np.min(env.action_space.low),
max_action=np.max(env.action_space.high),
device=args.device,
)
# load a previous policy
if args.resume_path:
policy.load_state_dict(torch.load(args.resume_path, map_location=args.device))
print("Loaded agent from: ", args.resume_path)
# collector
test_collector = Collector(policy, test_envs)
# log
now = datetime.datetime.now().strftime("%y%m%d-%H%M%S")
args.algo_name = "cql"
log_name = os.path.join(args.task, args.algo_name, str(args.seed), now)
log_path = os.path.join(args.logdir, log_name)
# logger
if args.logger == "wandb":
logger = WandbLogger(
save_interval=1,
name=log_name.replace(os.path.sep, "__"),
run_id=args.resume_id,
config=args,
project=args.wandb_project,
)
writer = SummaryWriter(log_path)
writer.add_text("args", str(args))
if args.logger == "tensorboard":
logger = TensorboardLogger(writer)
else: # wandb
logger.load(writer)
def save_best_fn(policy):
torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth"))
def watch():
if args.resume_path is None:
args.resume_path = os.path.join(log_path, "policy.pth")
policy.load_state_dict(torch.load(args.resume_path, map_location=torch.device("cpu")))
policy.eval()
collector = Collector(policy, env)
collector.collect(n_episode=1, render=1 / 35)
if not args.watch:
replay_buffer = load_buffer_d4rl(args.expert_data_task)
# trainer
result = OfflineTrainer(
policy=policy,
buffer=replay_buffer,
test_collector=test_collector,
max_epoch=args.epoch,
step_per_epoch=args.step_per_epoch,
episode_per_test=args.test_num,
batch_size=args.batch_size,
save_best_fn=save_best_fn,
logger=logger,
).run()
pprint.pprint(result)
else:
watch()
# Let's watch its performance!
policy.eval()
test_envs.seed(args.seed)
test_collector.reset()
result = test_collector.collect(n_episode=args.test_num, render=args.render)
print(f"Final reward: {result['rews'].mean()}, length: {result['lens'].mean()}")
if __name__ == "__main__":
test_cql()