Closes #947 This removes all kwargs from all policy constructors. While doing that, I also improved several names and added a whole lot of TODOs. ## Functional changes: 1. Added possibility to pass None as `critic2` and `critic2_optim`. In fact, the default behavior then should cover the absolute majority of cases 2. Added a function called `clone_optimizer` as a temporary measure to support passing `critic2_optim=None` ## Breaking changes: 1. `action_space` is no longer optional. In fact, it already was non-optional, as there was a ValueError in BasePolicy.init. So now several examples were fixed to reflect that 2. `reward_normalization` removed from DDPG and children. It was never allowed to pass it as `True` there, an error would have been raised in `compute_n_step_reward`. Now I removed it from the interface 3. renamed `critic1` and similar to `critic`, in order to have uniform interfaces. Note that the `critic` in DDPG was optional for the sole reason that child classes used `critic1`. I removed this optionality (DDPG can't do anything with `critic=None`) 4. Several renamings of fields (mostly private to public, so backwards compatible) ## Additional changes: 1. Removed type and default declaration from docstring. This kind of duplication is really not necessary 2. Policy constructors are now only called using named arguments, not a fragile mixture of positional and named as before 5. Minor beautifications in typing and code 6. Generally shortened docstrings and made them uniform across all policies (hopefully) ## Comment: With these changes, several problems in tianshou's inheritance hierarchy become more apparent. I tried highlighting them for future work. --------- Co-authored-by: Dominik Jain <d.jain@appliedai.de>
		
			
				
	
	
		
			215 lines
		
	
	
		
			7.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			215 lines
		
	
	
		
			7.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#!/usr/bin/env python3
 | 
						|
 | 
						|
import argparse
 | 
						|
import datetime
 | 
						|
import os
 | 
						|
import pickle
 | 
						|
import pprint
 | 
						|
import sys
 | 
						|
 | 
						|
import numpy as np
 | 
						|
import torch
 | 
						|
from torch.utils.tensorboard import SummaryWriter
 | 
						|
 | 
						|
from examples.atari.atari_network import DQN
 | 
						|
from examples.atari.atari_wrapper import make_atari_env
 | 
						|
from examples.offline.utils import load_buffer
 | 
						|
from tianshou.data import Collector, VectorReplayBuffer
 | 
						|
from tianshou.policy import DiscreteCRRPolicy
 | 
						|
from tianshou.trainer import OfflineTrainer
 | 
						|
from tianshou.utils import TensorboardLogger, WandbLogger
 | 
						|
from tianshou.utils.net.common import ActorCritic
 | 
						|
from tianshou.utils.net.discrete import Actor, Critic
 | 
						|
 | 
						|
 | 
						|
def get_args():
 | 
						|
    parser = argparse.ArgumentParser()
 | 
						|
    parser.add_argument("--task", type=str, default="PongNoFrameskip-v4")
 | 
						|
    parser.add_argument("--seed", type=int, default=1626)
 | 
						|
    parser.add_argument("--lr", type=float, default=0.0001)
 | 
						|
    parser.add_argument("--gamma", type=float, default=0.99)
 | 
						|
    parser.add_argument("--policy-improvement-mode", type=str, default="exp")
 | 
						|
    parser.add_argument("--ratio-upper-bound", type=float, default=20.0)
 | 
						|
    parser.add_argument("--beta", type=float, default=1.0)
 | 
						|
    parser.add_argument("--min-q-weight", type=float, default=10.0)
 | 
						|
    parser.add_argument("--target-update-freq", type=int, default=500)
 | 
						|
    parser.add_argument("--epoch", type=int, default=100)
 | 
						|
    parser.add_argument("--update-per-epoch", type=int, default=10000)
 | 
						|
    parser.add_argument("--batch-size", type=int, default=32)
 | 
						|
    parser.add_argument("--hidden-sizes", type=int, nargs="*", default=[512])
 | 
						|
    parser.add_argument("--test-num", type=int, default=10)
 | 
						|
    parser.add_argument("--frames-stack", type=int, default=4)
 | 
						|
    parser.add_argument("--scale-obs", type=int, default=0)
 | 
						|
    parser.add_argument("--logdir", type=str, default="log")
 | 
						|
    parser.add_argument("--render", type=float, default=0.0)
 | 
						|
    parser.add_argument("--resume-path", type=str, default=None)
 | 
						|
    parser.add_argument("--resume-id", type=str, default=None)
 | 
						|
    parser.add_argument(
 | 
						|
        "--logger",
 | 
						|
        type=str,
 | 
						|
        default="tensorboard",
 | 
						|
        choices=["tensorboard", "wandb"],
 | 
						|
    )
 | 
						|
    parser.add_argument("--wandb-project", type=str, default="offline_atari.benchmark")
 | 
						|
    parser.add_argument(
 | 
						|
        "--watch",
 | 
						|
        default=False,
 | 
						|
        action="store_true",
 | 
						|
        help="watch the play of pre-trained policy only",
 | 
						|
    )
 | 
						|
    parser.add_argument("--log-interval", type=int, default=100)
 | 
						|
    parser.add_argument(
 | 
						|
        "--load-buffer-name",
 | 
						|
        type=str,
 | 
						|
        default="./expert_DQN_PongNoFrameskip-v4.hdf5",
 | 
						|
    )
 | 
						|
    parser.add_argument("--buffer-from-rl-unplugged", action="store_true", default=False)
 | 
						|
    parser.add_argument(
 | 
						|
        "--device",
 | 
						|
        type=str,
 | 
						|
        default="cuda" if torch.cuda.is_available() else "cpu",
 | 
						|
    )
 | 
						|
    return parser.parse_known_args()[0]
 | 
						|
 | 
						|
 | 
						|
def test_discrete_crr(args=get_args()):
 | 
						|
    # envs
 | 
						|
    env, _, test_envs = make_atari_env(
 | 
						|
        args.task,
 | 
						|
        args.seed,
 | 
						|
        1,
 | 
						|
        args.test_num,
 | 
						|
        scale=args.scale_obs,
 | 
						|
        frame_stack=args.frames_stack,
 | 
						|
    )
 | 
						|
    args.state_shape = env.observation_space.shape or env.observation_space.n
 | 
						|
    args.action_shape = env.action_space.shape or env.action_space.n
 | 
						|
    # should be N_FRAMES x H x W
 | 
						|
    print("Observations shape:", args.state_shape)
 | 
						|
    print("Actions shape:", args.action_shape)
 | 
						|
    # seed
 | 
						|
    np.random.seed(args.seed)
 | 
						|
    torch.manual_seed(args.seed)
 | 
						|
    # model
 | 
						|
    feature_net = DQN(
 | 
						|
        *args.state_shape,
 | 
						|
        args.action_shape,
 | 
						|
        device=args.device,
 | 
						|
        features_only=True,
 | 
						|
    ).to(args.device)
 | 
						|
    actor = Actor(
 | 
						|
        feature_net,
 | 
						|
        args.action_shape,
 | 
						|
        hidden_sizes=args.hidden_sizes,
 | 
						|
        device=args.device,
 | 
						|
        softmax_output=False,
 | 
						|
    ).to(args.device)
 | 
						|
    critic = Critic(
 | 
						|
        feature_net,
 | 
						|
        hidden_sizes=args.hidden_sizes,
 | 
						|
        last_size=np.prod(args.action_shape),
 | 
						|
        device=args.device,
 | 
						|
    ).to(args.device)
 | 
						|
    actor_critic = ActorCritic(actor, critic)
 | 
						|
    optim = torch.optim.Adam(actor_critic.parameters(), lr=args.lr)
 | 
						|
    # define policy
 | 
						|
    policy = DiscreteCRRPolicy(
 | 
						|
        actor=actor,
 | 
						|
        critic=critic,
 | 
						|
        optim=optim,
 | 
						|
        action_space=env.action_space,
 | 
						|
        discount_factor=args.gamma,
 | 
						|
        policy_improvement_mode=args.policy_improvement_mode,
 | 
						|
        ratio_upper_bound=args.ratio_upper_bound,
 | 
						|
        beta=args.beta,
 | 
						|
        min_q_weight=args.min_q_weight,
 | 
						|
        target_update_freq=args.target_update_freq,
 | 
						|
    ).to(args.device)
 | 
						|
    # load a previous policy
 | 
						|
    if args.resume_path:
 | 
						|
        policy.load_state_dict(torch.load(args.resume_path, map_location=args.device))
 | 
						|
        print("Loaded agent from: ", args.resume_path)
 | 
						|
    # buffer
 | 
						|
    if args.buffer_from_rl_unplugged:
 | 
						|
        buffer = load_buffer(args.load_buffer_name)
 | 
						|
    else:
 | 
						|
        assert os.path.exists(
 | 
						|
            args.load_buffer_name,
 | 
						|
        ), "Please run atari_dqn.py first to get expert's data buffer."
 | 
						|
        if args.load_buffer_name.endswith(".pkl"):
 | 
						|
            with open(args.load_buffer_name, "rb") as f:
 | 
						|
                buffer = pickle.load(f)
 | 
						|
        elif args.load_buffer_name.endswith(".hdf5"):
 | 
						|
            buffer = VectorReplayBuffer.load_hdf5(args.load_buffer_name)
 | 
						|
        else:
 | 
						|
            print(f"Unknown buffer format: {args.load_buffer_name}")
 | 
						|
            sys.exit(0)
 | 
						|
    print("Replay buffer size:", len(buffer), flush=True)
 | 
						|
 | 
						|
    # collector
 | 
						|
    test_collector = Collector(policy, test_envs, exploration_noise=True)
 | 
						|
 | 
						|
    # log
 | 
						|
    now = datetime.datetime.now().strftime("%y%m%d-%H%M%S")
 | 
						|
    args.algo_name = "crr"
 | 
						|
    log_name = os.path.join(args.task, args.algo_name, str(args.seed), now)
 | 
						|
    log_path = os.path.join(args.logdir, log_name)
 | 
						|
 | 
						|
    # logger
 | 
						|
    if args.logger == "wandb":
 | 
						|
        logger = WandbLogger(
 | 
						|
            save_interval=1,
 | 
						|
            name=log_name.replace(os.path.sep, "__"),
 | 
						|
            run_id=args.resume_id,
 | 
						|
            config=args,
 | 
						|
            project=args.wandb_project,
 | 
						|
        )
 | 
						|
    writer = SummaryWriter(log_path)
 | 
						|
    writer.add_text("args", str(args))
 | 
						|
    if args.logger == "tensorboard":
 | 
						|
        logger = TensorboardLogger(writer)
 | 
						|
    else:  # wandb
 | 
						|
        logger.load(writer)
 | 
						|
 | 
						|
    def save_best_fn(policy):
 | 
						|
        torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth"))
 | 
						|
 | 
						|
    def stop_fn(mean_rewards):
 | 
						|
        return False
 | 
						|
 | 
						|
    # watch agent's performance
 | 
						|
    def watch():
 | 
						|
        print("Setup test envs ...")
 | 
						|
        policy.eval()
 | 
						|
        test_envs.seed(args.seed)
 | 
						|
        print("Testing agent ...")
 | 
						|
        test_collector.reset()
 | 
						|
        result = test_collector.collect(n_episode=args.test_num, render=args.render)
 | 
						|
        pprint.pprint(result)
 | 
						|
        rew = result["rews"].mean()
 | 
						|
        print(f'Mean reward (over {result["n/ep"]} episodes): {rew}')
 | 
						|
 | 
						|
    if args.watch:
 | 
						|
        watch()
 | 
						|
        sys.exit(0)
 | 
						|
 | 
						|
    result = OfflineTrainer(
 | 
						|
        policy=policy,
 | 
						|
        buffer=buffer,
 | 
						|
        test_collector=test_collector,
 | 
						|
        max_epoch=args.epoch,
 | 
						|
        step_per_epoch=args.update_per_epoch,
 | 
						|
        episode_per_test=args.test_num,
 | 
						|
        batch_size=args.batch_size,
 | 
						|
        stop_fn=stop_fn,
 | 
						|
        save_best_fn=save_best_fn,
 | 
						|
        logger=logger,
 | 
						|
    ).run()
 | 
						|
 | 
						|
    pprint.pprint(result)
 | 
						|
    watch()
 | 
						|
 | 
						|
 | 
						|
if __name__ == "__main__":
 | 
						|
    test_discrete_crr(get_args())
 |