Offline
In offline reinforcement learning setting, the agent learns a policy from a fixed dataset which is collected once with any policy. And the agent does not interact with environment anymore.
Continuous control
Once the dataset is collected, it will not be changed during training. We use d4rl datasets to train offline agent for continuous control. You can refer to d4rl to see how to use d4rl datasets.
We provide implementation of BCQ and CQL algorithm for continuous control.
Train
Tianshou provides an offline_trainer
for offline reinforcement learning. You can parse d4rl datasets into a ReplayBuffer
, and set it as the parameter buffer
of offline_trainer
. offline_bcq.py
is an example of offline RL using the d4rl dataset.
To train an agent with BCQ algorithm:
python offline_bcq.py --task halfcheetah-expert-v1
After 1M steps:
halfcheetah-expert-v1
is a mujoco environment. The setting of hyperparameters are similar to the off-policy algorithms in mujoco environment.
Results
Environment | BCQ |
---|---|
halfcheetah-expert-v1 | 10624.0 ± 181.4 |
Discrete control
For discrete control, we currently use ad hoc Atari data generated from a trained QRDQN agent. In the future, we can switch to better benchmarks such as the Atari portion of RL Unplugged.
Gather Data
To running CQL algorithm on Atari, you need to do the following things:
- Train an expert, by using the command listed in the QRDQN section of Atari examples:
python3 atari_qrdqn.py --task {your_task}
- Generate buffer with noise:
python3 atari_qrdqn.py --task {your_task} --watch --resume-path log/{your_task}/qrdqn/policy.pth --eps-test 0.2 --buffer-size 1000000 --save-buffer-name expert.hdf5
(note that 1M Atari buffer cannot be saved as.pkl
format because it is too large and will cause error); - Train offline model:
python3 atari_{bcq,cql,crr}.py --task {your_task} --load-buffer-name expert.hdf5
.
BCQ
We test our BCQ implementation on two example tasks (different from author's version, we use v4 instead of v0; one epoch means 10k gradient step):
Task | Online QRDQN | Behavioral | BCQ | parameters |
---|---|---|---|---|
PongNoFrameskip-v4 | 20.5 | 6.8 | 20.1 (epoch 5) | python3 atari_bcq.py --task "PongNoFrameskip-v4" --load-buffer-name log/PongNoFrameskip-v4/qrdqn/expert.hdf5 --epoch 5 |
BreakoutNoFrameskip-v4 | 394.3 | 46.9 | 64.6 (epoch 12, could be higher) | python3 atari_bcq.py --task "BreakoutNoFrameskip-v4" --load-buffer-name log/BreakoutNoFrameskip-v4/qrdqn/expert.hdf5 --epoch 12 |
CQL
We test our CQL implementation on two example tasks (different from author's version, we use v4 instead of v0; one epoch means 10k gradient step):
Task | Online QRDQN | Behavioral | CQL | parameters |
---|---|---|---|---|
PongNoFrameskip-v4 | 20.5 | 6.8 | 20.4 (epoch 5) | python3 atari_cql.py --task "PongNoFrameskip-v4" --load-buffer-name log/PongNoFrameskip-v4/qrdqn/expert.hdf5 --epoch 5 |
BreakoutNoFrameskip-v4 | 394.3 | 46.9 | 129.4 (epoch 12) | python3 atari_cql.py --task "BreakoutNoFrameskip-v4" --load-buffer-name log/BreakoutNoFrameskip-v4/qrdqn/expert.hdf5 --epoch 12 --min-q-weight 50 |
We reduce the size of the offline data to 10% and 1% of the above and get:
Buffer size 100000:
Task | Online QRDQN | Behavioral | CQL | parameters |
---|---|---|---|---|
PongNoFrameskip-v4 | 20.5 | 5.8 | 21 (epoch 5) | python3 atari_cql.py --task "PongNoFrameskip-v4" --load-buffer-name log/PongNoFrameskip-v4/qrdqn/expert.size_1e5.hdf5 --epoch 5 |
BreakoutNoFrameskip-v4 | 394.3 | 41.4 | 40.8 (epoch 12) | python3 atari_cql.py --task "BreakoutNoFrameskip-v4" --load-buffer-name log/BreakoutNoFrameskip-v4/qrdqn/expert.size_1e5.hdf5 --epoch 12 --min-q-weight 20 |
Buffer size 10000:
Task | Online QRDQN | Behavioral | CQL | parameters |
---|---|---|---|---|
PongNoFrameskip-v4 | 20.5 | nan | 1.8 (epoch 5) | python3 atari_cql.py --task "PongNoFrameskip-v4" --load-buffer-name log/PongNoFrameskip-v4/qrdqn/expert.size_1e4.hdf5 --epoch 5 --min-q-weight 1 |
BreakoutNoFrameskip-v4 | 394.3 | 31.7 | 22.5 (epoch 12) | python3 atari_cql.py --task "BreakoutNoFrameskip-v4" --load-buffer-name log/BreakoutNoFrameskip-v4/qrdqn/expert.size_1e4.hdf5 --epoch 12 --min-q-weight 10 |
CRR
We test our CRR implementation on two example tasks (different from author's version, we use v4 instead of v0; one epoch means 10k gradient step):
Task | Online QRDQN | Behavioral | CRR | CRR w/ CQL | parameters |
---|---|---|---|---|---|
PongNoFrameskip-v4 | 20.5 | 6.8 | -21 (epoch 5) | 17.7 (epoch 5) | python3 atari_crr.py --task "PongNoFrameskip-v4" --load-buffer-name log/PongNoFrameskip-v4/qrdqn/expert.hdf5 --epoch 5 |
BreakoutNoFrameskip-v4 | 394.3 | 46.9 | 23.3 (epoch 12) | 76.9 (epoch 12) | python3 atari_crr.py --task "BreakoutNoFrameskip-v4" --load-buffer-name log/BreakoutNoFrameskip-v4/qrdqn/expert.hdf5 --epoch 12 --min-q-weight 50 |
Note that CRR itself does not work well in Atari tasks but adding CQL loss/regularizer helps.