* add makefile * bump version * add isort and yapf * update contributing.md * update PR template * spelling check
85 lines
3.5 KiB
Python
85 lines
3.5 KiB
Python
from typing import List, Optional, Tuple, Union
|
|
|
|
import numpy as np
|
|
|
|
from tianshou.data import Batch, ReplayBuffer, ReplayBufferManager
|
|
|
|
|
|
class CachedReplayBuffer(ReplayBufferManager):
|
|
"""CachedReplayBuffer contains a given main buffer and n cached buffers, \
|
|
``cached_buffer_num * ReplayBuffer(size=max_episode_length)``.
|
|
|
|
The memory layout is: ``| main_buffer | cached_buffers[0] | cached_buffers[1] | ...
|
|
| cached_buffers[cached_buffer_num - 1] |``.
|
|
|
|
The data is first stored in cached buffers. When an episode is terminated, the data
|
|
will move to the main buffer and the corresponding cached buffer will be reset.
|
|
|
|
:param ReplayBuffer main_buffer: the main buffer whose ``.update()`` function
|
|
behaves normally.
|
|
:param int cached_buffer_num: number of ReplayBuffer needs to be created for cached
|
|
buffer.
|
|
:param int max_episode_length: the maximum length of one episode, used in each
|
|
cached buffer's maxsize.
|
|
|
|
.. seealso::
|
|
|
|
Please refer to :class:`~tianshou.data.ReplayBuffer` for other APIs' usage.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
main_buffer: ReplayBuffer,
|
|
cached_buffer_num: int,
|
|
max_episode_length: int,
|
|
) -> None:
|
|
assert cached_buffer_num > 0 and max_episode_length > 0
|
|
assert type(main_buffer) == ReplayBuffer
|
|
kwargs = main_buffer.options
|
|
buffers = [main_buffer] + [
|
|
ReplayBuffer(max_episode_length, **kwargs)
|
|
for _ in range(cached_buffer_num)
|
|
]
|
|
super().__init__(buffer_list=buffers)
|
|
self.main_buffer = self.buffers[0]
|
|
self.cached_buffers = self.buffers[1:]
|
|
self.cached_buffer_num = cached_buffer_num
|
|
|
|
def add(
|
|
self,
|
|
batch: Batch,
|
|
buffer_ids: Optional[Union[np.ndarray, List[int]]] = None
|
|
) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
|
|
"""Add a batch of data into CachedReplayBuffer.
|
|
|
|
Each of the data's length (first dimension) must equal to the length of
|
|
buffer_ids. By default the buffer_ids is [0, 1, ..., cached_buffer_num - 1].
|
|
|
|
Return (current_index, episode_reward, episode_length, episode_start_index)
|
|
with each of the shape (len(buffer_ids), ...), where (current_index[i],
|
|
episode_reward[i], episode_length[i], episode_start_index[i]) refers to the
|
|
cached_buffer_ids[i]th cached buffer's corresponding episode result.
|
|
"""
|
|
if buffer_ids is None:
|
|
buf_arr = np.arange(1, 1 + self.cached_buffer_num)
|
|
else: # make sure it is np.ndarray
|
|
buf_arr = np.asarray(buffer_ids) + 1
|
|
ptr, ep_rew, ep_len, ep_idx = super().add(batch, buffer_ids=buf_arr)
|
|
# find the terminated episode, move data from cached buf to main buf
|
|
updated_ptr, updated_ep_idx = [], []
|
|
done = batch.done.astype(bool)
|
|
for buffer_idx in buf_arr[done]:
|
|
index = self.main_buffer.update(self.buffers[buffer_idx])
|
|
if len(index) == 0: # unsuccessful move, replace with -1
|
|
index = [-1]
|
|
updated_ep_idx.append(index[0])
|
|
updated_ptr.append(index[-1])
|
|
self.buffers[buffer_idx].reset()
|
|
self._lengths[0] = len(self.main_buffer)
|
|
self._lengths[buffer_idx] = 0
|
|
self.last_index[0] = index[-1]
|
|
self.last_index[buffer_idx] = self._offset[buffer_idx]
|
|
ptr[done] = updated_ptr
|
|
ep_idx[done] = updated_ep_idx
|
|
return ptr, ep_rew, ep_len, ep_idx
|