Tianshou/examples/mujoco/fetch_her_ddpg.py
Juno T d42a5fb354
Hindsight Experience Replay as a replay buffer (#753)
## implementation
I implemented HER solely as a replay buffer. It is done by temporarily
directly re-writing transitions storage (`self._meta`) during the
`sample_indices()` call. The original transitions are cached and will be
restored at the beginning of the next sampling or when other methods is
called. This will make sure that. for example, n-step return calculation
can be done without altering the policy.

There is also a problem with the original indices sampling. The sampled
indices are not guaranteed to be from different episodes. So I decided
to perform re-writing based on the episode. This guarantees that the
sampled transitions from the same episode will have the same re-written
goal. This also make the re-writing ratio calculation slightly differ
from the paper, but it won't be too different if there are many episodes
in the buffer.

In the current commit, HER replay buffer only support 'future' strategy
and online sampling. This is the best of HER in term of performance and
memory efficiency.

I also add a few more convenient replay buffers
(`HERVectorReplayBuffer`, `HERReplayBufferManager`), test env
(`MyGoalEnv`), gym wrapper (`TruncatedAsTerminated`), unit tests, and a
simple example (examples/offline/fetch_her_ddpg.py).

## verification
I have added unit tests for almost everything I have implemented.
HER replay buffer was also tested using DDPG on [`FetchReach-v3`
env](https://github.com/Farama-Foundation/Gymnasium-Robotics). I used
default DDPG parameters from mujoco example and didn't tune anything
further to get this good result! (train script:
examples/offline/fetch_her_ddpg.py).


![Screen Shot 2022-10-02 at 19 22
53](https://user-images.githubusercontent.com/42699114/193454066-0dd0c65c-fd5f-4587-8912-b441d39de88a.png)
2022-10-30 16:54:54 -07:00

229 lines
8.1 KiB
Python

#!/usr/bin/env python3
import argparse
import datetime
import os
import pprint
import gym
import numpy as np
import torch
import wandb
from torch.utils.tensorboard import SummaryWriter
from tianshou.data import (
Collector,
HERReplayBuffer,
HERVectorReplayBuffer,
ReplayBuffer,
VectorReplayBuffer,
)
from tianshou.env import ShmemVectorEnv, TruncatedAsTerminated
from tianshou.exploration import GaussianNoise
from tianshou.policy import DDPGPolicy
from tianshou.trainer import offpolicy_trainer
from tianshou.utils import TensorboardLogger, WandbLogger
from tianshou.utils.net.common import Net, get_dict_state_decorator
from tianshou.utils.net.continuous import Actor, Critic
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--task", type=str, default="FetchReach-v3")
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--buffer-size", type=int, default=100000)
parser.add_argument("--hidden-sizes", type=int, nargs="*", default=[256, 256])
parser.add_argument("--actor-lr", type=float, default=1e-3)
parser.add_argument("--critic-lr", type=float, default=3e-3)
parser.add_argument("--gamma", type=float, default=0.99)
parser.add_argument("--tau", type=float, default=0.005)
parser.add_argument("--exploration-noise", type=float, default=0.1)
parser.add_argument("--start-timesteps", type=int, default=25000)
parser.add_argument("--epoch", type=int, default=10)
parser.add_argument("--step-per-epoch", type=int, default=5000)
parser.add_argument("--step-per-collect", type=int, default=1)
parser.add_argument("--update-per-step", type=int, default=1)
parser.add_argument("--n-step", type=int, default=1)
parser.add_argument("--batch-size", type=int, default=512)
parser.add_argument(
"--replay-buffer", type=str, default="her", choices=["normal", "her"]
)
parser.add_argument("--her-horizon", type=int, default=50)
parser.add_argument("--her-future-k", type=int, default=8)
parser.add_argument("--training-num", type=int, default=1)
parser.add_argument("--test-num", type=int, default=10)
parser.add_argument("--logdir", type=str, default="log")
parser.add_argument("--render", type=float, default=0.)
parser.add_argument(
"--device", type=str, default="cuda" if torch.cuda.is_available() else "cpu"
)
parser.add_argument("--resume-path", type=str, default=None)
parser.add_argument("--resume-id", type=str, default=None)
parser.add_argument(
"--logger",
type=str,
default="tensorboard",
choices=["tensorboard", "wandb"],
)
parser.add_argument("--wandb-project", type=str, default="HER-benchmark")
parser.add_argument(
"--watch",
default=False,
action="store_true",
help="watch the play of pre-trained policy only",
)
return parser.parse_args()
def make_fetch_env(task, training_num, test_num):
env = TruncatedAsTerminated(gym.make(task))
train_envs = ShmemVectorEnv(
[lambda: TruncatedAsTerminated(gym.make(task)) for _ in range(training_num)]
)
test_envs = ShmemVectorEnv(
[lambda: TruncatedAsTerminated(gym.make(task)) for _ in range(test_num)]
)
return env, train_envs, test_envs
def test_ddpg(args=get_args()):
# log
now = datetime.datetime.now().strftime("%y%m%d-%H%M%S")
args.algo_name = "ddpg"
log_name = os.path.join(args.task, args.algo_name, str(args.seed), now)
log_path = os.path.join(args.logdir, log_name)
# logger
if args.logger == "wandb":
logger = WandbLogger(
save_interval=1,
name=log_name.replace(os.path.sep, "__"),
run_id=args.resume_id,
config=args,
project=args.wandb_project,
)
logger.wandb_run.config.setdefaults(vars(args))
args = argparse.Namespace(**wandb.config)
writer = SummaryWriter(log_path)
writer.add_text("args", str(args))
if args.logger == "tensorboard":
logger = TensorboardLogger(writer)
else: # wandb
logger.load(writer)
env, train_envs, test_envs = make_fetch_env(
args.task, args.training_num, args.test_num
)
args.state_shape = {
'observation': env.observation_space['observation'].shape,
'achieved_goal': env.observation_space['achieved_goal'].shape,
'desired_goal': env.observation_space['desired_goal'].shape,
}
args.action_shape = env.action_space.shape or env.action_space.n
args.max_action = env.action_space.high[0]
args.exploration_noise = args.exploration_noise * args.max_action
print("Observations shape:", args.state_shape)
print("Actions shape:", args.action_shape)
print("Action range:", np.min(env.action_space.low), np.max(env.action_space.high))
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
# model
dict_state_dec, flat_state_shape = get_dict_state_decorator(
state_shape=args.state_shape,
keys=['observation', 'achieved_goal', 'desired_goal']
)
net_a = dict_state_dec(Net)(
flat_state_shape, hidden_sizes=args.hidden_sizes, device=args.device
)
actor = dict_state_dec(Actor)(
net_a, args.action_shape, max_action=args.max_action, device=args.device
).to(args.device)
actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
net_c = dict_state_dec(Net)(
flat_state_shape,
action_shape=args.action_shape,
hidden_sizes=args.hidden_sizes,
concat=True,
device=args.device,
)
critic = dict_state_dec(Critic)(net_c, device=args.device).to(args.device)
critic_optim = torch.optim.Adam(critic.parameters(), lr=args.critic_lr)
policy = DDPGPolicy(
actor,
actor_optim,
critic,
critic_optim,
tau=args.tau,
gamma=args.gamma,
exploration_noise=GaussianNoise(sigma=args.exploration_noise),
estimation_step=args.n_step,
action_space=env.action_space,
)
# load a previous policy
if args.resume_path:
policy.load_state_dict(torch.load(args.resume_path, map_location=args.device))
print("Loaded agent from: ", args.resume_path)
# collector
def compute_reward_fn(ag: np.ndarray, g: np.ndarray):
return env.compute_reward(ag, g, {})
if args.replay_buffer == "normal":
if args.training_num > 1:
buffer = VectorReplayBuffer(args.buffer_size, len(train_envs))
else:
buffer = ReplayBuffer(args.buffer_size)
else:
if args.training_num > 1:
buffer = HERVectorReplayBuffer(
args.buffer_size,
len(train_envs),
compute_reward_fn=compute_reward_fn,
horizon=args.her_horizon,
future_k=args.her_future_k,
)
else:
buffer = HERReplayBuffer(
args.buffer_size,
compute_reward_fn=compute_reward_fn,
horizon=args.her_horizon,
future_k=args.her_future_k,
)
train_collector = Collector(policy, train_envs, buffer, exploration_noise=True)
test_collector = Collector(policy, test_envs)
train_collector.collect(n_step=args.start_timesteps, random=True)
def save_best_fn(policy):
torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth"))
if not args.watch:
# trainer
result = offpolicy_trainer(
policy,
train_collector,
test_collector,
args.epoch,
args.step_per_epoch,
args.step_per_collect,
args.test_num,
args.batch_size,
save_best_fn=save_best_fn,
logger=logger,
update_per_step=args.update_per_step,
test_in_train=False,
)
pprint.pprint(result)
# Let's watch its performance!
policy.eval()
test_envs.seed(args.seed)
test_collector.reset()
result = test_collector.collect(n_episode=args.test_num, render=args.render)
print(f'Final reward: {result["rews"].mean()}, length: {result["lens"].mean()}')
if __name__ == "__main__":
test_ddpg()