## implementation I implemented HER solely as a replay buffer. It is done by temporarily directly re-writing transitions storage (`self._meta`) during the `sample_indices()` call. The original transitions are cached and will be restored at the beginning of the next sampling or when other methods is called. This will make sure that. for example, n-step return calculation can be done without altering the policy. There is also a problem with the original indices sampling. The sampled indices are not guaranteed to be from different episodes. So I decided to perform re-writing based on the episode. This guarantees that the sampled transitions from the same episode will have the same re-written goal. This also make the re-writing ratio calculation slightly differ from the paper, but it won't be too different if there are many episodes in the buffer. In the current commit, HER replay buffer only support 'future' strategy and online sampling. This is the best of HER in term of performance and memory efficiency. I also add a few more convenient replay buffers (`HERVectorReplayBuffer`, `HERReplayBufferManager`), test env (`MyGoalEnv`), gym wrapper (`TruncatedAsTerminated`), unit tests, and a simple example (examples/offline/fetch_her_ddpg.py). ## verification I have added unit tests for almost everything I have implemented. HER replay buffer was also tested using DDPG on [`FetchReach-v3` env](https://github.com/Farama-Foundation/Gymnasium-Robotics). I used default DDPG parameters from mujoco example and didn't tune anything further to get this good result! (train script: examples/offline/fetch_her_ddpg.py). 
214 lines
7.1 KiB
Python
214 lines
7.1 KiB
Python
import random
|
|
import time
|
|
from copy import deepcopy
|
|
|
|
import gym
|
|
import networkx as nx
|
|
import numpy as np
|
|
from gym.spaces import Box, Dict, Discrete, MultiDiscrete, Tuple
|
|
|
|
|
|
class MyTestEnv(gym.Env):
|
|
"""This is a "going right" task. The task is to go right ``size`` steps.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
size,
|
|
sleep=0,
|
|
dict_state=False,
|
|
recurse_state=False,
|
|
ma_rew=0,
|
|
multidiscrete_action=False,
|
|
random_sleep=False,
|
|
array_state=False
|
|
):
|
|
assert dict_state + recurse_state + array_state <= 1, \
|
|
"dict_state / recurse_state / array_state can be only one true"
|
|
self.size = size
|
|
self.sleep = sleep
|
|
self.random_sleep = random_sleep
|
|
self.dict_state = dict_state
|
|
self.recurse_state = recurse_state
|
|
self.array_state = array_state
|
|
self.ma_rew = ma_rew
|
|
self._md_action = multidiscrete_action
|
|
# how many steps this env has stepped
|
|
self.steps = 0
|
|
if dict_state:
|
|
self.observation_space = Dict(
|
|
{
|
|
"index": Box(shape=(1, ), low=0, high=size - 1),
|
|
"rand": Box(shape=(1, ), low=0, high=1, dtype=np.float64)
|
|
}
|
|
)
|
|
elif recurse_state:
|
|
self.observation_space = Dict(
|
|
{
|
|
"index":
|
|
Box(shape=(1, ), low=0, high=size - 1),
|
|
"dict":
|
|
Dict(
|
|
{
|
|
"tuple":
|
|
Tuple(
|
|
(
|
|
Discrete(2),
|
|
Box(shape=(2, ), low=0, high=1, dtype=np.float64)
|
|
)
|
|
),
|
|
"rand":
|
|
Box(shape=(1, 2), low=0, high=1, dtype=np.float64)
|
|
}
|
|
)
|
|
}
|
|
)
|
|
elif array_state:
|
|
self.observation_space = Box(shape=(4, 84, 84), low=0, high=255)
|
|
else:
|
|
self.observation_space = Box(shape=(1, ), low=0, high=size - 1)
|
|
if multidiscrete_action:
|
|
self.action_space = MultiDiscrete([2, 2])
|
|
else:
|
|
self.action_space = Discrete(2)
|
|
self.terminated = False
|
|
self.index = 0
|
|
|
|
def reset(self, state=0, seed=None):
|
|
super().reset(seed=seed)
|
|
self.terminated = False
|
|
self.do_sleep()
|
|
self.index = state
|
|
return self._get_state(), {'key': 1, 'env': self}
|
|
|
|
def _get_reward(self):
|
|
"""Generate a non-scalar reward if ma_rew is True."""
|
|
end_flag = int(self.terminated)
|
|
if self.ma_rew > 0:
|
|
return [end_flag] * self.ma_rew
|
|
return end_flag
|
|
|
|
def _get_state(self):
|
|
"""Generate state(observation) of MyTestEnv"""
|
|
if self.dict_state:
|
|
return {
|
|
'index': np.array([self.index], dtype=np.float32),
|
|
'rand': self.np_random.random(1)
|
|
}
|
|
elif self.recurse_state:
|
|
return {
|
|
'index': np.array([self.index], dtype=np.float32),
|
|
'dict': {
|
|
"tuple": (np.array([1], dtype=int), self.np_random.random(2)),
|
|
"rand": self.np_random.random((1, 2))
|
|
}
|
|
}
|
|
elif self.array_state:
|
|
img = np.zeros([4, 84, 84], int)
|
|
img[3, np.arange(84), np.arange(84)] = self.index
|
|
img[2, np.arange(84)] = self.index
|
|
img[1, :, np.arange(84)] = self.index
|
|
img[0] = self.index
|
|
return img
|
|
else:
|
|
return np.array([self.index], dtype=np.float32)
|
|
|
|
def do_sleep(self):
|
|
if self.sleep > 0:
|
|
sleep_time = random.random() if self.random_sleep else 1
|
|
sleep_time *= self.sleep
|
|
time.sleep(sleep_time)
|
|
|
|
def step(self, action):
|
|
self.steps += 1
|
|
if self._md_action:
|
|
action = action[0]
|
|
if self.terminated:
|
|
raise ValueError('step after done !!!')
|
|
self.do_sleep()
|
|
if self.index == self.size:
|
|
self.terminated = True
|
|
return self._get_state(), self._get_reward(), self.terminated, False, {}
|
|
if action == 0:
|
|
self.index = max(self.index - 1, 0)
|
|
return self._get_state(), self._get_reward(), self.terminated, False, \
|
|
{'key': 1, 'env': self} if self.dict_state else {}
|
|
elif action == 1:
|
|
self.index += 1
|
|
self.terminated = self.index == self.size
|
|
return self._get_state(), self._get_reward(), \
|
|
self.terminated, False, {'key': 1, 'env': self}
|
|
|
|
|
|
class NXEnv(gym.Env):
|
|
|
|
def __init__(self, size, obs_type, feat_dim=32):
|
|
self.size = size
|
|
self.feat_dim = feat_dim
|
|
self.graph = nx.Graph()
|
|
self.graph.add_nodes_from(list(range(size)))
|
|
assert obs_type in ["array", "object"]
|
|
self.obs_type = obs_type
|
|
|
|
def _encode_obs(self):
|
|
if self.obs_type == "array":
|
|
return np.stack([v["data"] for v in self.graph._node.values()])
|
|
return deepcopy(self.graph)
|
|
|
|
def reset(self):
|
|
graph_state = np.random.rand(self.size, self.feat_dim)
|
|
for i in range(self.size):
|
|
self.graph.nodes[i]["data"] = graph_state[i]
|
|
return self._encode_obs(), {}
|
|
|
|
def step(self, action):
|
|
next_graph_state = np.random.rand(self.size, self.feat_dim)
|
|
for i in range(self.size):
|
|
self.graph.nodes[i]["data"] = next_graph_state[i]
|
|
return self._encode_obs(), 1.0, 0, 0, {}
|
|
|
|
|
|
class MyGoalEnv(MyTestEnv):
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
assert kwargs.get("dict_state", 0) + kwargs.get("recurse_state", 0) == 0, \
|
|
"dict_state / recurse_state not supported"
|
|
super().__init__(*args, **kwargs)
|
|
obs, _ = super().reset(state=0)
|
|
obs, _, _, _, _ = super().step(1)
|
|
self._goal = obs * self.size
|
|
super_obsv = self.observation_space
|
|
self.observation_space = gym.spaces.Dict(
|
|
{
|
|
'observation': super_obsv,
|
|
'achieved_goal': super_obsv,
|
|
'desired_goal': super_obsv,
|
|
}
|
|
)
|
|
|
|
def reset(self, *args, **kwargs):
|
|
obs, info = super().reset(*args, **kwargs)
|
|
new_obs = {
|
|
'observation': obs,
|
|
'achieved_goal': obs,
|
|
'desired_goal': self._goal
|
|
}
|
|
return new_obs, info
|
|
|
|
def step(self, *args, **kwargs):
|
|
obs_next, rew, terminated, truncated, info = super().step(*args, **kwargs)
|
|
new_obs_next = {
|
|
'observation': obs_next,
|
|
'achieved_goal': obs_next,
|
|
'desired_goal': self._goal
|
|
}
|
|
return new_obs_next, rew, terminated, truncated, info
|
|
|
|
def compute_reward_fn(
|
|
self, achieved_goal: np.ndarray, desired_goal: np.ndarray, info: dict
|
|
) -> np.ndarray:
|
|
axis = -1
|
|
if self.array_state:
|
|
axis = (-3, -2, -1)
|
|
return (achieved_goal == desired_goal).all(axis=axis)
|