## implementation I implemented HER solely as a replay buffer. It is done by temporarily directly re-writing transitions storage (`self._meta`) during the `sample_indices()` call. The original transitions are cached and will be restored at the beginning of the next sampling or when other methods is called. This will make sure that. for example, n-step return calculation can be done without altering the policy. There is also a problem with the original indices sampling. The sampled indices are not guaranteed to be from different episodes. So I decided to perform re-writing based on the episode. This guarantees that the sampled transitions from the same episode will have the same re-written goal. This also make the re-writing ratio calculation slightly differ from the paper, but it won't be too different if there are many episodes in the buffer. In the current commit, HER replay buffer only support 'future' strategy and online sampling. This is the best of HER in term of performance and memory efficiency. I also add a few more convenient replay buffers (`HERVectorReplayBuffer`, `HERReplayBufferManager`), test env (`MyGoalEnv`), gym wrapper (`TruncatedAsTerminated`), unit tests, and a simple example (examples/offline/fetch_her_ddpg.py). ## verification I have added unit tests for almost everything I have implemented. HER replay buffer was also tested using DDPG on [`FetchReach-v3` env](https://github.com/Farama-Foundation/Gymnasium-Robotics). I used default DDPG parameters from mujoco example and didn't tune anything further to get this good result! (train script: examples/offline/fetch_her_ddpg.py). 
1322 lines
41 KiB
Python
1322 lines
41 KiB
Python
import os
|
|
import pickle
|
|
import tempfile
|
|
from timeit import timeit
|
|
|
|
import h5py
|
|
import numpy as np
|
|
import pytest
|
|
import torch
|
|
|
|
from tianshou.data import (
|
|
Batch,
|
|
CachedReplayBuffer,
|
|
HERReplayBuffer,
|
|
HERVectorReplayBuffer,
|
|
PrioritizedReplayBuffer,
|
|
PrioritizedVectorReplayBuffer,
|
|
ReplayBuffer,
|
|
SegmentTree,
|
|
VectorReplayBuffer,
|
|
)
|
|
from tianshou.data.utils.converter import to_hdf5
|
|
|
|
if __name__ == '__main__':
|
|
from env import MyGoalEnv, MyTestEnv
|
|
else: # pytest
|
|
from test.base.env import MyGoalEnv, MyTestEnv
|
|
|
|
|
|
def test_replaybuffer(size=10, bufsize=20):
|
|
env = MyTestEnv(size)
|
|
buf = ReplayBuffer(bufsize)
|
|
buf.update(buf)
|
|
assert str(buf) == buf.__class__.__name__ + '()'
|
|
obs = env.reset()
|
|
action_list = [1] * 5 + [0] * 10 + [1] * 10
|
|
for i, act in enumerate(action_list):
|
|
obs_next, rew, terminated, truncated, info = env.step(act)
|
|
buf.add(
|
|
Batch(
|
|
obs=obs,
|
|
act=[act],
|
|
rew=rew,
|
|
terminated=terminated,
|
|
truncated=truncated,
|
|
obs_next=obs_next,
|
|
info=info
|
|
)
|
|
)
|
|
obs = obs_next
|
|
assert len(buf) == min(bufsize, i + 1)
|
|
assert buf.act.dtype == int
|
|
assert buf.act.shape == (bufsize, 1)
|
|
data, indices = buf.sample(bufsize * 2)
|
|
assert (indices < len(buf)).all()
|
|
assert (data.obs < size).all()
|
|
assert (0 <= data.done).all() and (data.done <= 1).all()
|
|
assert (0 <= data.terminated).all() and (data.terminated <= 1).all()
|
|
assert (0 <= data.truncated).all() and (data.truncated <= 1).all()
|
|
b = ReplayBuffer(size=10)
|
|
# neg bsz should return empty index
|
|
assert b.sample_indices(-1).tolist() == []
|
|
ptr, ep_rew, ep_len, ep_idx = b.add(
|
|
Batch(
|
|
obs=1,
|
|
act=1,
|
|
rew=1,
|
|
terminated=1,
|
|
truncated=0,
|
|
obs_next='str',
|
|
info={
|
|
'a': 3,
|
|
'b': {
|
|
'c': 5.0
|
|
}
|
|
}
|
|
)
|
|
)
|
|
assert b.obs[0] == 1
|
|
assert b.done[0]
|
|
assert b.terminated[0]
|
|
assert not b.truncated[0]
|
|
assert b.obs_next[0] == 'str'
|
|
assert np.all(b.obs[1:] == 0)
|
|
assert np.all(b.obs_next[1:] == np.array(None))
|
|
assert b.info.a[0] == 3 and b.info.a.dtype == int
|
|
assert np.all(b.info.a[1:] == 0)
|
|
assert b.info.b.c[0] == 5.0 and b.info.b.c.dtype == float
|
|
assert np.all(b.info.b.c[1:] == 0.0)
|
|
assert ptr.shape == (1, ) and ptr[0] == 0
|
|
assert ep_rew.shape == (1, ) and ep_rew[0] == 1
|
|
assert ep_len.shape == (1, ) and ep_len[0] == 1
|
|
assert ep_idx.shape == (1, ) and ep_idx[0] == 0
|
|
# test extra keys pop up, the buffer should handle it dynamically
|
|
batch = Batch(
|
|
obs=2,
|
|
act=2,
|
|
rew=2,
|
|
terminated=0,
|
|
truncated=0,
|
|
obs_next="str2",
|
|
info={
|
|
"a": 4,
|
|
"d": {
|
|
"e": -np.inf
|
|
}
|
|
}
|
|
)
|
|
b.add(batch)
|
|
info_keys = ["a", "b", "d"]
|
|
assert set(b.info.keys()) == set(info_keys)
|
|
assert b.info.a[1] == 4 and b.info.b.c[1] == 0
|
|
assert b.info.d.e[1] == -np.inf
|
|
# test batch-style adding method, where len(batch) == 1
|
|
batch.done = [1]
|
|
batch.terminated = [0]
|
|
batch.truncated = [1]
|
|
batch.info.e = np.zeros([1, 4])
|
|
batch = Batch.stack([batch])
|
|
ptr, ep_rew, ep_len, ep_idx = b.add(batch, buffer_ids=[0])
|
|
assert ptr.shape == (1, ) and ptr[0] == 2
|
|
assert ep_rew.shape == (1, ) and ep_rew[0] == 4
|
|
assert ep_len.shape == (1, ) and ep_len[0] == 2
|
|
assert ep_idx.shape == (1, ) and ep_idx[0] == 1
|
|
assert set(b.info.keys()) == set(info_keys + ["e"])
|
|
assert b.info.e.shape == (b.maxsize, 1, 4)
|
|
with pytest.raises(IndexError):
|
|
b[22]
|
|
# test prev / next
|
|
assert np.all(b.prev(np.array([0, 1, 2])) == [0, 1, 1])
|
|
assert np.all(b.next(np.array([0, 1, 2])) == [0, 2, 2])
|
|
batch.done = [0]
|
|
b.add(batch, buffer_ids=[0])
|
|
assert np.all(b.prev(np.array([0, 1, 2, 3])) == [0, 1, 1, 3])
|
|
assert np.all(b.next(np.array([0, 1, 2, 3])) == [0, 2, 2, 3])
|
|
|
|
|
|
def test_ignore_obs_next(size=10):
|
|
# Issue 82
|
|
buf = ReplayBuffer(size, ignore_obs_next=True)
|
|
for i in range(size):
|
|
buf.add(
|
|
Batch(
|
|
obs={
|
|
'mask1': np.array([i, 1, 1, 0, 0]),
|
|
'mask2': np.array([i + 4, 0, 1, 0, 0]),
|
|
'mask': i
|
|
},
|
|
act={
|
|
'act_id': i,
|
|
'position_id': i + 3
|
|
},
|
|
rew=i,
|
|
terminated=i % 3 == 0,
|
|
truncated=False,
|
|
info={'if': i}
|
|
)
|
|
)
|
|
indices = np.arange(len(buf))
|
|
orig = np.arange(len(buf))
|
|
data = buf[indices]
|
|
data2 = buf[indices]
|
|
assert isinstance(data, Batch)
|
|
assert isinstance(data2, Batch)
|
|
assert np.allclose(indices, orig)
|
|
assert np.allclose(data.obs_next.mask, data2.obs_next.mask)
|
|
assert np.allclose(data.obs_next.mask, [0, 2, 3, 3, 5, 6, 6, 8, 9, 9])
|
|
buf.stack_num = 4
|
|
data = buf[indices]
|
|
data2 = buf[indices]
|
|
assert np.allclose(data.obs_next.mask, data2.obs_next.mask)
|
|
assert np.allclose(
|
|
data.obs_next.mask,
|
|
np.array(
|
|
[
|
|
[0, 0, 0, 0], [1, 1, 1, 2], [1, 1, 2, 3], [1, 1, 2, 3], [4, 4, 4, 5],
|
|
[4, 4, 5, 6], [4, 4, 5, 6], [7, 7, 7, 8], [7, 7, 8, 9], [7, 7, 8, 9]
|
|
]
|
|
)
|
|
)
|
|
assert np.allclose(data.info['if'], data2.info['if'])
|
|
assert np.allclose(
|
|
data.info['if'],
|
|
np.array(
|
|
[
|
|
[0, 0, 0, 0], [1, 1, 1, 1], [1, 1, 1, 2], [1, 1, 2, 3], [4, 4, 4, 4],
|
|
[4, 4, 4, 5], [4, 4, 5, 6], [7, 7, 7, 7], [7, 7, 7, 8], [7, 7, 8, 9]
|
|
]
|
|
)
|
|
)
|
|
assert data.obs_next
|
|
|
|
|
|
def test_stack(size=5, bufsize=9, stack_num=4, cached_num=3):
|
|
env = MyTestEnv(size)
|
|
buf = ReplayBuffer(bufsize, stack_num=stack_num)
|
|
buf2 = ReplayBuffer(bufsize, stack_num=stack_num, sample_avail=True)
|
|
buf3 = ReplayBuffer(bufsize, stack_num=stack_num, save_only_last_obs=True)
|
|
obs, info = env.reset(1)
|
|
for _ in range(16):
|
|
obs_next, rew, terminated, truncated, info = env.step(1)
|
|
done = terminated or truncated
|
|
buf.add(
|
|
Batch(
|
|
obs=obs,
|
|
act=1,
|
|
rew=rew,
|
|
terminated=terminated,
|
|
truncated=truncated,
|
|
info=info
|
|
)
|
|
)
|
|
buf2.add(
|
|
Batch(
|
|
obs=obs,
|
|
act=1,
|
|
rew=rew,
|
|
terminated=terminated,
|
|
truncated=truncated,
|
|
info=info
|
|
)
|
|
)
|
|
buf3.add(
|
|
Batch(
|
|
obs=[obs, obs, obs],
|
|
act=1,
|
|
rew=rew,
|
|
terminated=terminated,
|
|
truncated=truncated,
|
|
obs_next=[obs, obs],
|
|
info=info
|
|
)
|
|
)
|
|
obs = obs_next
|
|
if done:
|
|
obs, info = env.reset(1)
|
|
indices = np.arange(len(buf))
|
|
assert np.allclose(
|
|
buf.get(indices, 'obs')[..., 0], [
|
|
[1, 1, 1, 2], [1, 1, 2, 3], [1, 2, 3, 4], [1, 1, 1, 1], [1, 1, 1, 2],
|
|
[1, 1, 2, 3], [1, 2, 3, 4], [4, 4, 4, 4], [1, 1, 1, 1]
|
|
]
|
|
)
|
|
assert np.allclose(buf.get(indices, 'obs'), buf3.get(indices, 'obs'))
|
|
assert np.allclose(buf.get(indices, 'obs'), buf3.get(indices, 'obs_next'))
|
|
_, indices = buf2.sample(0)
|
|
assert indices.tolist() == [2, 6]
|
|
_, indices = buf2.sample(1)
|
|
assert indices[0] in [2, 6]
|
|
batch, indices = buf2.sample(-1) # neg bsz -> no data
|
|
assert indices.tolist() == [] and len(batch) == 0
|
|
with pytest.raises(IndexError):
|
|
buf[bufsize * 2]
|
|
|
|
|
|
def test_priortized_replaybuffer(size=32, bufsize=15):
|
|
env = MyTestEnv(size)
|
|
buf = PrioritizedReplayBuffer(bufsize, 0.5, 0.5)
|
|
buf2 = PrioritizedVectorReplayBuffer(bufsize, buffer_num=3, alpha=0.5, beta=0.5)
|
|
obs, info = env.reset()
|
|
action_list = [1] * 5 + [0] * 10 + [1] * 10
|
|
for i, act in enumerate(action_list):
|
|
obs_next, rew, terminated, truncated, info = env.step(act)
|
|
batch = Batch(
|
|
obs=obs,
|
|
act=act,
|
|
rew=rew,
|
|
terminated=terminated,
|
|
truncated=truncated,
|
|
obs_next=obs_next,
|
|
info=info,
|
|
policy=np.random.randn() - 0.5
|
|
)
|
|
batch_stack = Batch.stack([batch, batch, batch])
|
|
buf.add(Batch.stack([batch]), buffer_ids=[0])
|
|
buf2.add(batch_stack, buffer_ids=[0, 1, 2])
|
|
obs = obs_next
|
|
data, indices = buf.sample(len(buf) // 2)
|
|
if len(buf) // 2 == 0:
|
|
assert len(data) == len(buf)
|
|
else:
|
|
assert len(data) == len(buf) // 2
|
|
assert len(buf) == min(bufsize, i + 1)
|
|
assert len(buf2) == min(bufsize, 3 * (i + 1))
|
|
# check single buffer's data
|
|
assert buf.info.key.shape == (buf.maxsize, )
|
|
assert buf.rew.dtype == float
|
|
assert buf.done.dtype == bool
|
|
assert buf.terminated.dtype == bool
|
|
assert buf.truncated.dtype == bool
|
|
data, indices = buf.sample(len(buf) // 2)
|
|
buf.update_weight(indices, -data.weight / 2)
|
|
assert np.allclose(buf.weight[indices], np.abs(-data.weight / 2)**buf._alpha)
|
|
# check multi buffer's data
|
|
assert np.allclose(buf2[np.arange(buf2.maxsize)].weight, 1)
|
|
batch, indices = buf2.sample(10)
|
|
buf2.update_weight(indices, batch.weight * 0)
|
|
weight = buf2[np.arange(buf2.maxsize)].weight
|
|
mask = np.isin(np.arange(buf2.maxsize), indices)
|
|
assert np.all(weight[mask] == weight[mask][0])
|
|
assert np.all(weight[~mask] == weight[~mask][0])
|
|
assert weight[~mask][0] < weight[mask][0] and weight[mask][0] <= 1
|
|
|
|
|
|
def test_herreplaybuffer(size=10, bufsize=100, sample_sz=4):
|
|
env_size = size
|
|
env = MyGoalEnv(env_size, array_state=True)
|
|
|
|
def compute_reward_fn(ag, g):
|
|
return env.compute_reward_fn(ag, g, {})
|
|
|
|
buf = HERReplayBuffer(
|
|
bufsize, compute_reward_fn=compute_reward_fn, horizon=30, future_k=8
|
|
)
|
|
buf2 = HERVectorReplayBuffer(
|
|
bufsize,
|
|
buffer_num=3,
|
|
compute_reward_fn=compute_reward_fn,
|
|
horizon=30,
|
|
future_k=8
|
|
)
|
|
# Apply her on every episodes sampled (Hacky but necessary for deterministic test)
|
|
buf.future_p = 1
|
|
for buf2_buf in buf2.buffers:
|
|
buf2_buf.future_p = 1
|
|
|
|
obs, _ = env.reset()
|
|
action_list = [1] * 5 + [0] * 10 + [1] * 10
|
|
for i, act in enumerate(action_list):
|
|
obs_next, rew, terminated, truncated, info = env.step(act)
|
|
batch = Batch(
|
|
obs=obs,
|
|
act=[act],
|
|
rew=rew,
|
|
terminated=terminated,
|
|
truncated=truncated,
|
|
obs_next=obs_next,
|
|
info=info
|
|
)
|
|
buf.add(batch)
|
|
buf2.add(Batch.stack([batch, batch, batch]), buffer_ids=[0, 1, 2])
|
|
obs = obs_next
|
|
assert len(buf) == min(bufsize, i + 1)
|
|
assert len(buf2) == min(bufsize, 3 * (i + 1))
|
|
|
|
batch, indices = buf.sample(sample_sz)
|
|
|
|
# Check that goals are the same for the episode (only 1 ep in buffer)
|
|
tmp_indices = indices.copy()
|
|
for _ in range(2 * env_size):
|
|
obs = buf[tmp_indices].obs
|
|
obs_next = buf[tmp_indices].obs_next
|
|
rew = buf[tmp_indices].rew
|
|
g = obs.desired_goal.reshape(sample_sz, -1)[:, 0]
|
|
ag_next = obs_next.achieved_goal.reshape(sample_sz, -1)[:, 0]
|
|
g_next = obs_next.desired_goal.reshape(sample_sz, -1)[:, 0]
|
|
assert np.all(g == g[0])
|
|
assert np.all(g_next == g_next[0])
|
|
assert np.all(rew == (ag_next == g).astype(np.float32))
|
|
tmp_indices = buf.next(tmp_indices)
|
|
|
|
# Check that goals are correctly restored
|
|
buf._restore_cache()
|
|
tmp_indices = indices.copy()
|
|
for _ in range(2 * env_size):
|
|
obs = buf[tmp_indices].obs
|
|
obs_next = buf[tmp_indices].obs_next
|
|
g = obs.desired_goal.reshape(sample_sz, -1)[:, 0]
|
|
g_next = obs_next.desired_goal.reshape(sample_sz, -1)[:, 0]
|
|
assert np.all(g == env_size)
|
|
assert np.all(g_next == g_next[0])
|
|
assert np.all(g == g[0])
|
|
tmp_indices = buf.next(tmp_indices)
|
|
|
|
# Test vector buffer
|
|
batch, indices = buf2.sample(sample_sz)
|
|
|
|
# Check that goals are the same for the episode (only 1 ep in buffer)
|
|
tmp_indices = indices.copy()
|
|
for _ in range(2 * env_size):
|
|
obs = buf2[tmp_indices].obs
|
|
obs_next = buf2[tmp_indices].obs_next
|
|
rew = buf2[tmp_indices].rew
|
|
g = obs.desired_goal.reshape(sample_sz, -1)[:, 0]
|
|
ag_next = obs_next.achieved_goal.reshape(sample_sz, -1)[:, 0]
|
|
g_next = obs_next.desired_goal.reshape(sample_sz, -1)[:, 0]
|
|
assert np.all(g == g_next)
|
|
assert np.all(rew == (ag_next == g).astype(np.float32))
|
|
tmp_indices = buf2.next(tmp_indices)
|
|
|
|
# Check that goals are correctly restored
|
|
buf2._restore_cache()
|
|
tmp_indices = indices.copy()
|
|
for _ in range(2 * env_size):
|
|
obs = buf2[tmp_indices].obs
|
|
obs_next = buf2[tmp_indices].obs_next
|
|
g = obs.desired_goal.reshape(sample_sz, -1)[:, 0]
|
|
g_next = obs_next.desired_goal.reshape(sample_sz, -1)[:, 0]
|
|
assert np.all(g == env_size)
|
|
assert np.all(g_next == g_next[0])
|
|
assert np.all(g == g[0])
|
|
tmp_indices = buf2.next(tmp_indices)
|
|
|
|
# Test handling cycled indices
|
|
env_size = size
|
|
bufsize = 15
|
|
env = MyGoalEnv(env_size, array_state=False)
|
|
|
|
def compute_reward_fn(ag, g):
|
|
return env.compute_reward_fn(ag, g, {})
|
|
|
|
buf = HERReplayBuffer(
|
|
bufsize, compute_reward_fn=compute_reward_fn, horizon=30, future_k=8
|
|
)
|
|
buf._index = 5 # shifted start index
|
|
buf.future_p = 1
|
|
action_list = [1] * 10
|
|
for ep_len in [5, 10]:
|
|
obs, _ = env.reset()
|
|
for i in range(ep_len):
|
|
act = 1
|
|
obs_next, rew, terminated, truncated, info = env.step(act)
|
|
batch = Batch(
|
|
obs=obs,
|
|
act=[act],
|
|
rew=rew,
|
|
terminated=(i == ep_len - 1),
|
|
truncated=(i == ep_len - 1),
|
|
obs_next=obs_next,
|
|
info=info
|
|
)
|
|
buf.add(batch)
|
|
obs = obs_next
|
|
batch, indices = buf.sample(0)
|
|
assert np.all(buf[:5].obs.desired_goal == buf[0].obs.desired_goal)
|
|
assert np.all(buf[5:10].obs.desired_goal == buf[5].obs.desired_goal)
|
|
assert np.all(buf[10:].obs.desired_goal == buf[0].obs.desired_goal) # (same ep)
|
|
assert np.all(buf[0].obs.desired_goal != buf[5].obs.desired_goal) # (diff ep)
|
|
|
|
|
|
def test_update():
|
|
buf1 = ReplayBuffer(4, stack_num=2)
|
|
buf2 = ReplayBuffer(4, stack_num=2)
|
|
for i in range(5):
|
|
buf1.add(
|
|
Batch(
|
|
obs=np.array([i]),
|
|
act=float(i),
|
|
rew=i * i,
|
|
terminated=i % 2 == 0,
|
|
truncated=False,
|
|
info={'incident': 'found'}
|
|
)
|
|
)
|
|
assert len(buf1) > len(buf2)
|
|
buf2.update(buf1)
|
|
assert len(buf1) == len(buf2)
|
|
assert (buf2[0].obs == buf1[1].obs).all()
|
|
assert (buf2[-1].obs == buf1[0].obs).all()
|
|
b = CachedReplayBuffer(ReplayBuffer(10), 4, 5)
|
|
with pytest.raises(NotImplementedError):
|
|
b.update(b)
|
|
|
|
|
|
def test_segtree():
|
|
realop = np.sum
|
|
# small test
|
|
actual_len = 8
|
|
tree = SegmentTree(actual_len) # 1-15. 8-15 are leaf nodes
|
|
assert len(tree) == actual_len
|
|
assert np.all([tree[i] == 0. for i in range(actual_len)])
|
|
with pytest.raises(IndexError):
|
|
tree[actual_len]
|
|
naive = np.zeros([actual_len])
|
|
for _ in range(1000):
|
|
# random choose a place to perform single update
|
|
index = np.random.randint(actual_len)
|
|
value = np.random.rand()
|
|
naive[index] = value
|
|
tree[index] = value
|
|
for i in range(actual_len):
|
|
for j in range(i + 1, actual_len):
|
|
ref = realop(naive[i:j])
|
|
out = tree.reduce(i, j)
|
|
assert np.allclose(ref, out), (ref, out)
|
|
assert np.allclose(tree.reduce(start=1), realop(naive[1:]))
|
|
assert np.allclose(tree.reduce(end=-1), realop(naive[:-1]))
|
|
# batch setitem
|
|
for _ in range(1000):
|
|
index = np.random.choice(actual_len, size=4)
|
|
value = np.random.rand(4)
|
|
naive[index] = value
|
|
tree[index] = value
|
|
assert np.allclose(realop(naive), tree.reduce())
|
|
for _ in range(10):
|
|
left = np.random.randint(actual_len)
|
|
right = np.random.randint(left + 1, actual_len + 1)
|
|
assert np.allclose(realop(naive[left:right]), tree.reduce(left, right))
|
|
# large test
|
|
actual_len = 16384
|
|
tree = SegmentTree(actual_len)
|
|
naive = np.zeros([actual_len])
|
|
for _ in range(1000):
|
|
index = np.random.choice(actual_len, size=64)
|
|
value = np.random.rand(64)
|
|
naive[index] = value
|
|
tree[index] = value
|
|
assert np.allclose(realop(naive), tree.reduce())
|
|
for _ in range(10):
|
|
left = np.random.randint(actual_len)
|
|
right = np.random.randint(left + 1, actual_len + 1)
|
|
assert np.allclose(realop(naive[left:right]), tree.reduce(left, right))
|
|
|
|
# test prefix-sum-idx
|
|
actual_len = 8
|
|
tree = SegmentTree(actual_len)
|
|
naive = np.random.rand(actual_len)
|
|
tree[np.arange(actual_len)] = naive
|
|
for _ in range(1000):
|
|
scalar = np.random.rand() * naive.sum()
|
|
index = tree.get_prefix_sum_idx(scalar)
|
|
assert naive[:index].sum() <= scalar <= naive[:index + 1].sum()
|
|
# corner case here
|
|
naive = np.ones(actual_len, int)
|
|
tree[np.arange(actual_len)] = naive
|
|
for scalar in range(actual_len):
|
|
index = tree.get_prefix_sum_idx(scalar * 1.)
|
|
assert naive[:index].sum() <= scalar <= naive[:index + 1].sum()
|
|
tree = SegmentTree(10)
|
|
tree[np.arange(3)] = np.array([0.1, 0, 0.1])
|
|
assert np.allclose(
|
|
tree.get_prefix_sum_idx(np.array([0, .1, .1 + 1e-6, .2 - 1e-6])), [0, 0, 2, 2]
|
|
)
|
|
with pytest.raises(AssertionError):
|
|
tree.get_prefix_sum_idx(.2)
|
|
# test large prefix-sum-idx
|
|
actual_len = 16384
|
|
tree = SegmentTree(actual_len)
|
|
naive = np.random.rand(actual_len)
|
|
tree[np.arange(actual_len)] = naive
|
|
for _ in range(1000):
|
|
scalar = np.random.rand() * naive.sum()
|
|
index = tree.get_prefix_sum_idx(scalar)
|
|
assert naive[:index].sum() <= scalar <= naive[:index + 1].sum()
|
|
|
|
# profile
|
|
if __name__ == '__main__':
|
|
size = 100000
|
|
bsz = 64
|
|
naive = np.random.rand(size)
|
|
tree = SegmentTree(size)
|
|
tree[np.arange(size)] = naive
|
|
|
|
def sample_npbuf():
|
|
return np.random.choice(size, bsz, p=naive / naive.sum())
|
|
|
|
def sample_tree():
|
|
scalar = np.random.rand(bsz) * tree.reduce()
|
|
return tree.get_prefix_sum_idx(scalar)
|
|
|
|
print('npbuf', timeit(sample_npbuf, setup=sample_npbuf, number=1000))
|
|
print('tree', timeit(sample_tree, setup=sample_tree, number=1000))
|
|
|
|
|
|
def test_pickle():
|
|
size = 100
|
|
vbuf = ReplayBuffer(size, stack_num=2)
|
|
pbuf = PrioritizedReplayBuffer(size, 0.6, 0.4)
|
|
rew = np.array([1, 1])
|
|
for i in range(4):
|
|
vbuf.add(
|
|
Batch(
|
|
obs=Batch(index=np.array([i])),
|
|
act=0,
|
|
rew=rew,
|
|
terminated=0,
|
|
truncated=0,
|
|
)
|
|
)
|
|
for i in range(5):
|
|
pbuf.add(
|
|
Batch(
|
|
obs=Batch(index=np.array([i])),
|
|
act=2,
|
|
rew=rew,
|
|
terminated=0,
|
|
truncated=0,
|
|
info=np.random.rand()
|
|
)
|
|
)
|
|
# save & load
|
|
_vbuf = pickle.loads(pickle.dumps(vbuf))
|
|
_pbuf = pickle.loads(pickle.dumps(pbuf))
|
|
assert len(_vbuf) == len(vbuf) and np.allclose(_vbuf.act, vbuf.act)
|
|
assert len(_pbuf) == len(pbuf) and np.allclose(_pbuf.act, pbuf.act)
|
|
# make sure the meta var is identical
|
|
assert _vbuf.stack_num == vbuf.stack_num
|
|
assert np.allclose(
|
|
_pbuf.weight[np.arange(len(_pbuf))], pbuf.weight[np.arange(len(pbuf))]
|
|
)
|
|
|
|
|
|
def test_hdf5():
|
|
size = 100
|
|
buffers = {
|
|
"array": ReplayBuffer(size, stack_num=2),
|
|
"prioritized": PrioritizedReplayBuffer(size, 0.6, 0.4),
|
|
}
|
|
buffer_types = {k: b.__class__ for k, b in buffers.items()}
|
|
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
info_t = torch.tensor([1.]).to(device)
|
|
for i in range(4):
|
|
kwargs = {
|
|
'obs': Batch(index=np.array([i])),
|
|
'act': i,
|
|
'rew': np.array([1, 2]),
|
|
'terminated': i % 3 == 2,
|
|
'truncated': False,
|
|
'done': i % 3 == 2,
|
|
'info': {
|
|
"number": {
|
|
"n": i,
|
|
"t": info_t
|
|
},
|
|
'extra': None
|
|
},
|
|
}
|
|
buffers["array"].add(Batch(kwargs))
|
|
buffers["prioritized"].add(Batch(kwargs))
|
|
|
|
# save
|
|
paths = {}
|
|
for k, buf in buffers.items():
|
|
f, path = tempfile.mkstemp(suffix='.hdf5')
|
|
os.close(f)
|
|
buf.save_hdf5(path)
|
|
paths[k] = path
|
|
|
|
# load replay buffer
|
|
_buffers = {k: buffer_types[k].load_hdf5(paths[k]) for k in paths.keys()}
|
|
|
|
# compare
|
|
for k in buffers.keys():
|
|
assert len(_buffers[k]) == len(buffers[k])
|
|
assert np.allclose(_buffers[k].act, buffers[k].act)
|
|
assert _buffers[k].stack_num == buffers[k].stack_num
|
|
assert _buffers[k].maxsize == buffers[k].maxsize
|
|
assert np.all(_buffers[k]._indices == buffers[k]._indices)
|
|
for k in ["array", "prioritized"]:
|
|
assert _buffers[k]._index == buffers[k]._index
|
|
assert isinstance(buffers[k].get(0, "info"), Batch)
|
|
assert isinstance(_buffers[k].get(0, "info"), Batch)
|
|
for k in ["array"]:
|
|
assert np.all(buffers[k][:].info.number.n == _buffers[k][:].info.number.n)
|
|
assert np.all(buffers[k][:].info.extra == _buffers[k][:].info.extra)
|
|
|
|
# raise exception when value cannot be pickled
|
|
data = {"not_supported": lambda x: x * x}
|
|
grp = h5py.Group
|
|
with pytest.raises(NotImplementedError):
|
|
to_hdf5(data, grp)
|
|
# ndarray with data type not supported by HDF5 that cannot be pickled
|
|
data = {"not_supported": np.array(lambda x: x * x)}
|
|
grp = h5py.Group
|
|
with pytest.raises(RuntimeError):
|
|
to_hdf5(data, grp)
|
|
|
|
|
|
def test_replaybuffermanager():
|
|
buf = VectorReplayBuffer(20, 4)
|
|
batch = Batch(
|
|
obs=[1, 2, 3],
|
|
act=[1, 2, 3],
|
|
rew=[1, 2, 3],
|
|
terminated=[0, 0, 1],
|
|
truncated=[0, 0, 0],
|
|
)
|
|
ptr, ep_rew, ep_len, ep_idx = buf.add(batch, buffer_ids=[0, 1, 2])
|
|
assert np.all(ep_len == [0, 0, 1]) and np.all(ep_rew == [0, 0, 3])
|
|
assert np.all(ptr == [0, 5, 10]) and np.all(ep_idx == [0, 5, 10])
|
|
with pytest.raises(NotImplementedError):
|
|
# ReplayBufferManager cannot be updated
|
|
buf.update(buf)
|
|
# sample index / prev / next / unfinished_index
|
|
indices = buf.sample_indices(11000)
|
|
assert np.bincount(indices)[[0, 5, 10]].min() >= 3000 # uniform sample
|
|
batch, indices = buf.sample(0)
|
|
assert np.allclose(indices, [0, 5, 10])
|
|
indices_prev = buf.prev(indices)
|
|
assert np.allclose(indices_prev, indices), indices_prev
|
|
indices_next = buf.next(indices)
|
|
assert np.allclose(indices_next, indices), indices_next
|
|
assert np.allclose(buf.unfinished_index(), [0, 5])
|
|
buf.add(
|
|
Batch(obs=[4], act=[4], rew=[4], terminated=[1], truncated=[0]),
|
|
buffer_ids=[3]
|
|
)
|
|
assert np.allclose(buf.unfinished_index(), [0, 5])
|
|
batch, indices = buf.sample(10)
|
|
batch, indices = buf.sample(0)
|
|
assert np.allclose(indices, [0, 5, 10, 15])
|
|
indices_prev = buf.prev(indices)
|
|
assert np.allclose(indices_prev, indices), indices_prev
|
|
indices_next = buf.next(indices)
|
|
assert np.allclose(indices_next, indices), indices_next
|
|
data = np.array([0, 0, 0, 0])
|
|
buf.add(
|
|
Batch(obs=data, act=data, rew=data, terminated=data, truncated=data),
|
|
buffer_ids=[0, 1, 2, 3]
|
|
)
|
|
buf.add(
|
|
Batch(obs=data, act=data, rew=data, terminated=1 - data, truncated=data),
|
|
buffer_ids=[0, 1, 2, 3]
|
|
)
|
|
assert len(buf) == 12
|
|
buf.add(
|
|
Batch(obs=data, act=data, rew=data, terminated=data, truncated=data),
|
|
buffer_ids=[0, 1, 2, 3]
|
|
)
|
|
buf.add(
|
|
Batch(obs=data, act=data, rew=data, terminated=[0, 1, 0, 1], truncated=data),
|
|
buffer_ids=[0, 1, 2, 3]
|
|
)
|
|
assert len(buf) == 20
|
|
indices = buf.sample_indices(120000)
|
|
assert np.bincount(indices).min() >= 5000
|
|
batch, indices = buf.sample(10)
|
|
indices = buf.sample_indices(0)
|
|
assert np.allclose(indices, np.arange(len(buf)))
|
|
# check the actual data stored in buf._meta
|
|
assert np.allclose(
|
|
buf.done, [
|
|
0,
|
|
0,
|
|
1,
|
|
0,
|
|
0,
|
|
0,
|
|
0,
|
|
1,
|
|
0,
|
|
1,
|
|
1,
|
|
0,
|
|
1,
|
|
0,
|
|
0,
|
|
1,
|
|
0,
|
|
1,
|
|
0,
|
|
1,
|
|
]
|
|
)
|
|
assert np.allclose(
|
|
buf.prev(indices), [
|
|
0,
|
|
0,
|
|
1,
|
|
3,
|
|
3,
|
|
5,
|
|
5,
|
|
6,
|
|
8,
|
|
8,
|
|
10,
|
|
11,
|
|
11,
|
|
13,
|
|
13,
|
|
15,
|
|
16,
|
|
16,
|
|
18,
|
|
18,
|
|
]
|
|
)
|
|
assert np.allclose(
|
|
buf.next(indices), [
|
|
1,
|
|
2,
|
|
2,
|
|
4,
|
|
4,
|
|
6,
|
|
7,
|
|
7,
|
|
9,
|
|
9,
|
|
10,
|
|
12,
|
|
12,
|
|
14,
|
|
14,
|
|
15,
|
|
17,
|
|
17,
|
|
19,
|
|
19,
|
|
]
|
|
)
|
|
assert np.allclose(buf.unfinished_index(), [4, 14])
|
|
ptr, ep_rew, ep_len, ep_idx = buf.add(
|
|
Batch(obs=[1], act=[1], rew=[1], terminated=[1], truncated=[0]),
|
|
buffer_ids=[2]
|
|
)
|
|
assert np.all(ep_len == [3]) and np.all(ep_rew == [1])
|
|
assert np.all(ptr == [10]) and np.all(ep_idx == [13])
|
|
assert np.allclose(buf.unfinished_index(), [4])
|
|
indices = list(sorted(buf.sample_indices(0)))
|
|
assert np.allclose(indices, np.arange(len(buf)))
|
|
assert np.allclose(
|
|
buf.prev(indices), [
|
|
0,
|
|
0,
|
|
1,
|
|
3,
|
|
3,
|
|
5,
|
|
5,
|
|
6,
|
|
8,
|
|
8,
|
|
14,
|
|
11,
|
|
11,
|
|
13,
|
|
13,
|
|
15,
|
|
16,
|
|
16,
|
|
18,
|
|
18,
|
|
]
|
|
)
|
|
assert np.allclose(
|
|
buf.next(indices), [
|
|
1,
|
|
2,
|
|
2,
|
|
4,
|
|
4,
|
|
6,
|
|
7,
|
|
7,
|
|
9,
|
|
9,
|
|
10,
|
|
12,
|
|
12,
|
|
14,
|
|
10,
|
|
15,
|
|
17,
|
|
17,
|
|
19,
|
|
19,
|
|
]
|
|
)
|
|
# corner case: list, int and -1
|
|
assert buf.prev(-1) == buf.prev([buf.maxsize - 1])[0]
|
|
assert buf.next(-1) == buf.next([buf.maxsize - 1])[0]
|
|
batch = buf._meta
|
|
batch.info = np.ones(buf.maxsize)
|
|
buf.set_batch(batch)
|
|
assert np.allclose(buf.buffers[-1].info, [1] * 5)
|
|
assert buf.sample_indices(-1).tolist() == []
|
|
assert np.array([ReplayBuffer(0, ignore_obs_next=True)]).dtype == object
|
|
|
|
|
|
def test_cachedbuffer():
|
|
buf = CachedReplayBuffer(ReplayBuffer(10), 4, 5)
|
|
assert buf.sample_indices(0).tolist() == []
|
|
# check the normal function/usage/storage in CachedReplayBuffer
|
|
ptr, ep_rew, ep_len, ep_idx = buf.add(
|
|
Batch(obs=[1], act=[1], rew=[1], terminated=[0], truncated=[0]),
|
|
buffer_ids=[1]
|
|
)
|
|
obs = np.zeros(buf.maxsize)
|
|
obs[15] = 1
|
|
indices = buf.sample_indices(0)
|
|
assert np.allclose(indices, [15])
|
|
assert np.allclose(buf.prev(indices), [15])
|
|
assert np.allclose(buf.next(indices), [15])
|
|
assert np.allclose(buf.obs, obs)
|
|
assert np.all(ep_len == [0]) and np.all(ep_rew == [0.0])
|
|
assert np.all(ptr == [15]) and np.all(ep_idx == [15])
|
|
ptr, ep_rew, ep_len, ep_idx = buf.add(
|
|
Batch(obs=[2], act=[2], rew=[2], terminated=[1], truncated=[0]),
|
|
buffer_ids=[3]
|
|
)
|
|
obs[[0, 25]] = 2
|
|
indices = buf.sample_indices(0)
|
|
assert np.allclose(indices, [0, 15])
|
|
assert np.allclose(buf.prev(indices), [0, 15])
|
|
assert np.allclose(buf.next(indices), [0, 15])
|
|
assert np.allclose(buf.obs, obs)
|
|
assert np.all(ep_len == [1]) and np.all(ep_rew == [2.0])
|
|
assert np.all(ptr == [0]) and np.all(ep_idx == [0])
|
|
assert np.allclose(buf.unfinished_index(), [15])
|
|
assert np.allclose(buf.sample_indices(0), [0, 15])
|
|
ptr, ep_rew, ep_len, ep_idx = buf.add(
|
|
Batch(obs=[3, 4], act=[3, 4], rew=[3, 4], terminated=[0, 1], truncated=[0, 0]),
|
|
buffer_ids=[3, 1] # TODO
|
|
)
|
|
assert np.all(ep_len == [0, 2]) and np.all(ep_rew == [0, 5.0])
|
|
assert np.all(ptr == [25, 2]) and np.all(ep_idx == [25, 1])
|
|
obs[[0, 1, 2, 15, 16, 25]] = [2, 1, 4, 1, 4, 3]
|
|
assert np.allclose(buf.obs, obs)
|
|
assert np.allclose(buf.unfinished_index(), [25])
|
|
indices = buf.sample_indices(0)
|
|
assert np.allclose(indices, [0, 1, 2, 25])
|
|
assert np.allclose(buf.done[indices], [1, 0, 1, 0])
|
|
assert np.allclose(buf.prev(indices), [0, 1, 1, 25])
|
|
assert np.allclose(buf.next(indices), [0, 2, 2, 25])
|
|
indices = buf.sample_indices(10000)
|
|
assert np.bincount(indices)[[0, 1, 2, 25]].min() > 2000 # uniform sample
|
|
# cached buffer with main_buffer size == 0 (no update)
|
|
# used in test_collector
|
|
buf = CachedReplayBuffer(ReplayBuffer(0, sample_avail=True), 4, 5)
|
|
data = np.zeros(4)
|
|
rew = np.ones([4, 4])
|
|
buf.add(
|
|
Batch(
|
|
obs=data,
|
|
act=data,
|
|
rew=rew,
|
|
terminated=[0, 0, 1, 1],
|
|
truncated=[0, 0, 0, 0]
|
|
)
|
|
)
|
|
buf.add(
|
|
Batch(
|
|
obs=data,
|
|
act=data,
|
|
rew=rew,
|
|
terminated=[0, 0, 0, 0],
|
|
truncated=[0, 0, 0, 0]
|
|
)
|
|
)
|
|
buf.add(
|
|
Batch(
|
|
obs=data,
|
|
act=data,
|
|
rew=rew,
|
|
terminated=[1, 1, 1, 1],
|
|
truncated=[0, 0, 0, 0]
|
|
)
|
|
)
|
|
buf.add(
|
|
Batch(
|
|
obs=data,
|
|
act=data,
|
|
rew=rew,
|
|
terminated=[0, 0, 0, 0],
|
|
truncated=[0, 0, 0, 0]
|
|
)
|
|
)
|
|
ptr, ep_rew, ep_len, ep_idx = buf.add(
|
|
Batch(
|
|
obs=data,
|
|
act=data,
|
|
rew=rew,
|
|
terminated=[0, 1, 0, 1],
|
|
truncated=[0, 0, 0, 0]
|
|
)
|
|
)
|
|
assert np.all(ptr == [1, -1, 11, -1]) and np.all(ep_idx == [0, -1, 10, -1])
|
|
assert np.all(ep_len == [0, 2, 0, 2])
|
|
assert np.all(ep_rew == [data, data + 2, data, data + 2])
|
|
assert np.allclose(
|
|
buf.done, [
|
|
0,
|
|
0,
|
|
1,
|
|
0,
|
|
0,
|
|
0,
|
|
1,
|
|
1,
|
|
0,
|
|
0,
|
|
0,
|
|
0,
|
|
0,
|
|
0,
|
|
0,
|
|
0,
|
|
1,
|
|
0,
|
|
0,
|
|
0,
|
|
]
|
|
)
|
|
indices = buf.sample_indices(0)
|
|
assert np.allclose(indices, [0, 1, 10, 11])
|
|
assert np.allclose(buf.prev(indices), [0, 0, 10, 10])
|
|
assert np.allclose(buf.next(indices), [1, 1, 11, 11])
|
|
|
|
|
|
def test_multibuf_stack():
|
|
size = 5
|
|
bufsize = 9
|
|
stack_num = 4
|
|
cached_num = 3
|
|
env = MyTestEnv(size)
|
|
# test if CachedReplayBuffer can handle stack_num + ignore_obs_next
|
|
buf4 = CachedReplayBuffer(
|
|
ReplayBuffer(bufsize, stack_num=stack_num, ignore_obs_next=True), cached_num,
|
|
size
|
|
)
|
|
# test if CachedReplayBuffer can handle corner case:
|
|
# buffer + stack_num + ignore_obs_next + sample_avail
|
|
buf5 = CachedReplayBuffer(
|
|
ReplayBuffer(
|
|
bufsize, stack_num=stack_num, ignore_obs_next=True, sample_avail=True
|
|
), cached_num, size
|
|
)
|
|
obs, info = env.reset(1)
|
|
for i in range(18):
|
|
obs_next, rew, terminated, truncated, info = env.step(1)
|
|
done = terminated or truncated
|
|
obs_list = np.array([obs + size * i for i in range(cached_num)])
|
|
act_list = [1] * cached_num
|
|
rew_list = [rew] * cached_num
|
|
terminated_list = [terminated] * cached_num
|
|
truncated_list = [truncated] * cached_num
|
|
obs_next_list = -obs_list
|
|
info_list = [info] * cached_num
|
|
batch = Batch(
|
|
obs=obs_list,
|
|
act=act_list,
|
|
rew=rew_list,
|
|
terminated=terminated_list,
|
|
truncated=truncated_list,
|
|
obs_next=obs_next_list,
|
|
info=info_list
|
|
)
|
|
buf5.add(batch)
|
|
buf4.add(batch)
|
|
assert np.all(buf4.obs == buf5.obs)
|
|
assert np.all(buf4.done == buf5.done)
|
|
assert np.all(buf4.terminated == buf5.terminated)
|
|
assert np.all(buf4.truncated == buf5.truncated)
|
|
obs = obs_next
|
|
if done:
|
|
obs, info = env.reset(1)
|
|
# check the `add` order is correct
|
|
assert np.allclose(
|
|
buf4.obs.reshape(-1),
|
|
[
|
|
12,
|
|
13,
|
|
14,
|
|
4,
|
|
6,
|
|
7,
|
|
8,
|
|
9,
|
|
11, # main_buffer
|
|
1,
|
|
2,
|
|
3,
|
|
4,
|
|
0, # cached_buffer[0]
|
|
6,
|
|
7,
|
|
8,
|
|
9,
|
|
0, # cached_buffer[1]
|
|
11,
|
|
12,
|
|
13,
|
|
14,
|
|
0, # cached_buffer[2]
|
|
]
|
|
), buf4.obs
|
|
assert np.allclose(
|
|
buf4.done,
|
|
[
|
|
0,
|
|
0,
|
|
1,
|
|
1,
|
|
0,
|
|
0,
|
|
0,
|
|
1,
|
|
0, # main_buffer
|
|
0,
|
|
0,
|
|
0,
|
|
1,
|
|
0, # cached_buffer[0]
|
|
0,
|
|
0,
|
|
0,
|
|
1,
|
|
0, # cached_buffer[1]
|
|
0,
|
|
0,
|
|
0,
|
|
1,
|
|
0, # cached_buffer[2]
|
|
]
|
|
), buf4.done
|
|
assert np.allclose(buf4.unfinished_index(), [10, 15, 20])
|
|
indices = sorted(buf4.sample_indices(0))
|
|
assert np.allclose(indices, list(range(bufsize)) + [9, 10, 14, 15, 19, 20])
|
|
assert np.allclose(
|
|
buf4[indices].obs[..., 0], [
|
|
[11, 11, 11, 12],
|
|
[11, 11, 12, 13],
|
|
[11, 12, 13, 14],
|
|
[4, 4, 4, 4],
|
|
[6, 6, 6, 6],
|
|
[6, 6, 6, 7],
|
|
[6, 6, 7, 8],
|
|
[6, 7, 8, 9],
|
|
[11, 11, 11, 11],
|
|
[1, 1, 1, 1],
|
|
[1, 1, 1, 2],
|
|
[6, 6, 6, 6],
|
|
[6, 6, 6, 7],
|
|
[11, 11, 11, 11],
|
|
[11, 11, 11, 12],
|
|
]
|
|
)
|
|
assert np.allclose(
|
|
buf4[indices].obs_next[..., 0], [
|
|
[11, 11, 12, 13],
|
|
[11, 12, 13, 14],
|
|
[11, 12, 13, 14],
|
|
[4, 4, 4, 4],
|
|
[6, 6, 6, 7],
|
|
[6, 6, 7, 8],
|
|
[6, 7, 8, 9],
|
|
[6, 7, 8, 9],
|
|
[11, 11, 11, 12],
|
|
[1, 1, 1, 2],
|
|
[1, 1, 1, 2],
|
|
[6, 6, 6, 7],
|
|
[6, 6, 6, 7],
|
|
[11, 11, 11, 12],
|
|
[11, 11, 11, 12],
|
|
]
|
|
)
|
|
indices = buf5.sample_indices(0)
|
|
assert np.allclose(sorted(indices), [2, 7])
|
|
assert np.all(np.isin(buf5.sample_indices(100), indices))
|
|
# manually change the stack num
|
|
buf5.stack_num = 2
|
|
for buf in buf5.buffers:
|
|
buf.stack_num = 2
|
|
indices = buf5.sample_indices(0)
|
|
assert np.allclose(sorted(indices), [0, 1, 2, 5, 6, 7, 10, 15, 20])
|
|
batch, _ = buf5.sample(0)
|
|
# test Atari with CachedReplayBuffer, save_only_last_obs + ignore_obs_next
|
|
buf6 = CachedReplayBuffer(
|
|
ReplayBuffer(
|
|
bufsize,
|
|
stack_num=stack_num,
|
|
save_only_last_obs=True,
|
|
ignore_obs_next=True
|
|
), cached_num, size
|
|
)
|
|
obs = np.random.rand(size, 4, 84, 84)
|
|
buf6.add(
|
|
Batch(
|
|
obs=[obs[2], obs[0]],
|
|
act=[1, 1],
|
|
rew=[0, 0],
|
|
terminated=[0, 1],
|
|
truncated=[0, 0],
|
|
obs_next=[obs[3], obs[1]]
|
|
),
|
|
buffer_ids=[1, 2]
|
|
)
|
|
assert buf6.obs.shape == (buf6.maxsize, 84, 84)
|
|
assert np.allclose(buf6.obs[0], obs[0, -1])
|
|
assert np.allclose(buf6.obs[14], obs[2, -1])
|
|
assert np.allclose(buf6.obs[19], obs[0, -1])
|
|
assert buf6[0].obs.shape == (4, 84, 84)
|
|
|
|
|
|
def test_multibuf_hdf5():
|
|
size = 100
|
|
buffers = {
|
|
"vector": VectorReplayBuffer(size * 4, 4),
|
|
"cached": CachedReplayBuffer(ReplayBuffer(size), 4, size)
|
|
}
|
|
buffer_types = {k: b.__class__ for k, b in buffers.items()}
|
|
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
info_t = torch.tensor([1.]).to(device)
|
|
for i in range(4):
|
|
kwargs = {
|
|
'obs': Batch(index=np.array([i])),
|
|
'act': i,
|
|
'rew': np.array([1, 2]),
|
|
'terminated': i % 3 == 2,
|
|
'truncated': False,
|
|
'done': i % 3 == 2,
|
|
'info': {
|
|
"number": {
|
|
"n": i,
|
|
"t": info_t
|
|
},
|
|
'extra': None
|
|
},
|
|
}
|
|
buffers["vector"].add(
|
|
Batch.stack([kwargs, kwargs, kwargs]), buffer_ids=[0, 1, 2]
|
|
)
|
|
buffers["cached"].add(
|
|
Batch.stack([kwargs, kwargs, kwargs]), buffer_ids=[0, 1, 2]
|
|
)
|
|
|
|
# save
|
|
paths = {}
|
|
for k, buf in buffers.items():
|
|
f, path = tempfile.mkstemp(suffix='.hdf5')
|
|
os.close(f)
|
|
buf.save_hdf5(path)
|
|
paths[k] = path
|
|
|
|
# load replay buffer
|
|
_buffers = {k: buffer_types[k].load_hdf5(paths[k]) for k in paths.keys()}
|
|
|
|
# compare
|
|
for k in buffers.keys():
|
|
assert len(_buffers[k]) == len(buffers[k])
|
|
assert np.allclose(_buffers[k].act, buffers[k].act)
|
|
assert _buffers[k].stack_num == buffers[k].stack_num
|
|
assert _buffers[k].maxsize == buffers[k].maxsize
|
|
assert np.all(_buffers[k]._indices == buffers[k]._indices)
|
|
# check shallow copy in VectorReplayBuffer
|
|
for k in ["vector", "cached"]:
|
|
buffers[k].info.number.n[0] = -100
|
|
assert buffers[k].buffers[0].info.number.n[0] == -100
|
|
# check if still behave normally
|
|
for k in ["vector", "cached"]:
|
|
kwargs = {
|
|
'obs': Batch(index=np.array([5])),
|
|
'act': 5,
|
|
'rew': np.array([2, 1]),
|
|
'terminated': False,
|
|
'truncated': False,
|
|
'done': False,
|
|
'info': {
|
|
"number": {
|
|
"n": i
|
|
},
|
|
'Timelimit.truncate': True
|
|
},
|
|
}
|
|
buffers[k].add(Batch.stack([kwargs, kwargs, kwargs, kwargs]))
|
|
act = np.zeros(buffers[k].maxsize)
|
|
if k == "vector":
|
|
act[np.arange(5)] = np.array([0, 1, 2, 3, 5])
|
|
act[np.arange(5) + size] = np.array([0, 1, 2, 3, 5])
|
|
act[np.arange(5) + size * 2] = np.array([0, 1, 2, 3, 5])
|
|
act[size * 3] = 5
|
|
elif k == "cached":
|
|
act[np.arange(9)] = np.array([0, 1, 2, 0, 1, 2, 0, 1, 2])
|
|
act[np.arange(3) + size] = np.array([3, 5, 2])
|
|
act[np.arange(3) + size * 2] = np.array([3, 5, 2])
|
|
act[np.arange(3) + size * 3] = np.array([3, 5, 2])
|
|
act[size * 4] = 5
|
|
assert np.allclose(buffers[k].act, act)
|
|
info_keys = ["number", "extra", "Timelimit.truncate"]
|
|
assert set(buffers[k].info.keys()) == set(info_keys)
|
|
|
|
for path in paths.values():
|
|
os.remove(path)
|
|
|
|
|
|
def test_from_data():
|
|
obs_data = np.ndarray((10, 3, 3), dtype="uint8")
|
|
for i in range(10):
|
|
obs_data[i] = i * np.ones((3, 3), dtype="uint8")
|
|
obs_next_data = np.zeros_like(obs_data)
|
|
obs_next_data[:-1] = obs_data[1:]
|
|
f, path = tempfile.mkstemp(suffix='.hdf5')
|
|
os.close(f)
|
|
with h5py.File(path, "w") as f:
|
|
obs = f.create_dataset("obs", data=obs_data)
|
|
act = f.create_dataset("act", data=np.arange(10, dtype="int32"))
|
|
rew = f.create_dataset("rew", data=np.arange(10, dtype="float32"))
|
|
terminated = f.create_dataset("terminated", data=np.zeros(10, dtype="bool"))
|
|
truncated = f.create_dataset("truncated", data=np.zeros(10, dtype="bool"))
|
|
done = f.create_dataset("done", data=np.zeros(10, dtype="bool"))
|
|
obs_next = f.create_dataset("obs_next", data=obs_next_data)
|
|
buf = ReplayBuffer.from_data(
|
|
obs, act, rew, terminated, truncated, done, obs_next
|
|
)
|
|
assert len(buf) == 10
|
|
batch = buf[3]
|
|
assert np.array_equal(batch.obs, 3 * np.ones((3, 3), dtype="uint8"))
|
|
assert batch.act == 3
|
|
assert batch.rew == 3.0
|
|
assert not batch.done
|
|
assert np.array_equal(batch.obs_next, 4 * np.ones((3, 3), dtype="uint8"))
|
|
os.remove(path)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
test_replaybuffer()
|
|
test_ignore_obs_next()
|
|
test_stack()
|
|
test_segtree()
|
|
test_priortized_replaybuffer()
|
|
test_update()
|
|
test_pickle()
|
|
test_hdf5()
|
|
test_replaybuffermanager()
|
|
test_cachedbuffer()
|
|
test_multibuf_stack()
|
|
test_multibuf_hdf5()
|
|
test_from_data()
|
|
test_herreplaybuffer()
|