## implementation I implemented HER solely as a replay buffer. It is done by temporarily directly re-writing transitions storage (`self._meta`) during the `sample_indices()` call. The original transitions are cached and will be restored at the beginning of the next sampling or when other methods is called. This will make sure that. for example, n-step return calculation can be done without altering the policy. There is also a problem with the original indices sampling. The sampled indices are not guaranteed to be from different episodes. So I decided to perform re-writing based on the episode. This guarantees that the sampled transitions from the same episode will have the same re-written goal. This also make the re-writing ratio calculation slightly differ from the paper, but it won't be too different if there are many episodes in the buffer. In the current commit, HER replay buffer only support 'future' strategy and online sampling. This is the best of HER in term of performance and memory efficiency. I also add a few more convenient replay buffers (`HERVectorReplayBuffer`, `HERReplayBufferManager`), test env (`MyGoalEnv`), gym wrapper (`TruncatedAsTerminated`), unit tests, and a simple example (examples/offline/fetch_her_ddpg.py). ## verification I have added unit tests for almost everything I have implemented. HER replay buffer was also tested using DDPG on [`FetchReach-v3` env](https://github.com/Farama-Foundation/Gymnasium-Robotics). I used default DDPG parameters from mujoco example and didn't tune anything further to get this good result! (train script: examples/offline/fetch_her_ddpg.py). 
431 lines
15 KiB
Python
431 lines
15 KiB
Python
import sys
|
|
import time
|
|
|
|
import gym
|
|
import numpy as np
|
|
import pytest
|
|
from gym.spaces.discrete import Discrete
|
|
|
|
from tianshou.data import Batch
|
|
from tianshou.env import (
|
|
ContinuousToDiscrete,
|
|
DummyVectorEnv,
|
|
MultiDiscreteToDiscrete,
|
|
RayVectorEnv,
|
|
ShmemVectorEnv,
|
|
SubprocVectorEnv,
|
|
VectorEnvNormObs,
|
|
)
|
|
from tianshou.env.gym_wrappers import TruncatedAsTerminated
|
|
from tianshou.utils import RunningMeanStd
|
|
|
|
if __name__ == "__main__":
|
|
from env import MyTestEnv, NXEnv
|
|
else: # pytest
|
|
from test.base.env import MyTestEnv, NXEnv
|
|
|
|
try:
|
|
import envpool
|
|
except ImportError:
|
|
envpool = None
|
|
|
|
|
|
def has_ray():
|
|
try:
|
|
import ray # noqa: F401
|
|
return True
|
|
except ImportError:
|
|
return False
|
|
|
|
|
|
def recurse_comp(a, b):
|
|
try:
|
|
if isinstance(a, np.ndarray):
|
|
if a.dtype == object:
|
|
return np.array([recurse_comp(m, n) for m, n in zip(a, b)]).all()
|
|
else:
|
|
return np.allclose(a, b)
|
|
elif isinstance(a, (list, tuple)):
|
|
return np.array([recurse_comp(m, n) for m, n in zip(a, b)]).all()
|
|
elif isinstance(a, dict):
|
|
return np.array([recurse_comp(a[k], b[k]) for k in a.keys()]).all()
|
|
except (Exception):
|
|
return False
|
|
|
|
|
|
def test_async_env(size=10000, num=8, sleep=0.1):
|
|
# simplify the test case, just keep stepping
|
|
env_fns = [
|
|
lambda i=i: MyTestEnv(size=i, sleep=sleep, random_sleep=True)
|
|
for i in range(size, size + num)
|
|
]
|
|
test_cls = [SubprocVectorEnv, ShmemVectorEnv]
|
|
if has_ray():
|
|
test_cls += [RayVectorEnv]
|
|
for cls in test_cls:
|
|
v = cls(env_fns, wait_num=num // 2, timeout=1e-3)
|
|
v.seed(None)
|
|
v.reset()
|
|
# for a random variable u ~ U[0, 1], let v = max{u1, u2, ..., un}
|
|
# P(v <= x) = x^n (0 <= x <= 1), pdf of v is nx^{n-1}
|
|
# expectation of v is n / (n + 1)
|
|
# for a synchronous environment, the following actions should take
|
|
# about 7 * sleep * num / (num + 1) seconds
|
|
# for async simulation, the analysis is complicated, but the time cost
|
|
# should be smaller
|
|
action_list = [1] * num + [0] * (num * 2) + [1] * (num * 4)
|
|
current_idx_start = 0
|
|
act = action_list[:num]
|
|
env_ids = list(range(num))
|
|
o = []
|
|
spent_time = time.time()
|
|
while current_idx_start < len(action_list):
|
|
A, B, C, D, E, = v.step(action=act, id=env_ids)
|
|
b = Batch({"obs": A, "rew": B, "terminate": C, "truncated": D, "info": E})
|
|
env_ids = b.info.env_id
|
|
o.append(b)
|
|
current_idx_start += len(act)
|
|
# len of action may be smaller than len(A) in the end
|
|
act = action_list[current_idx_start:current_idx_start + len(A)]
|
|
# truncate env_ids with the first terms
|
|
# typically len(env_ids) == len(A) == len(action), except for the
|
|
# last batch when actions are not enough
|
|
env_ids = env_ids[:len(act)]
|
|
spent_time = time.time() - spent_time
|
|
Batch.cat(o)
|
|
v.close()
|
|
# assure 1/7 improvement
|
|
if sys.platform == "linux" and cls != RayVectorEnv:
|
|
# macOS/Windows cannot pass this check
|
|
assert spent_time < 6.0 * sleep * num / (num + 1)
|
|
|
|
|
|
def test_async_check_id(size=100, num=4, sleep=.2, timeout=.7):
|
|
env_fns = [
|
|
lambda: MyTestEnv(size=size, sleep=sleep * 2),
|
|
lambda: MyTestEnv(size=size, sleep=sleep * 3),
|
|
lambda: MyTestEnv(size=size, sleep=sleep * 5),
|
|
lambda: MyTestEnv(size=size, sleep=sleep * 7)
|
|
]
|
|
test_cls = [SubprocVectorEnv, ShmemVectorEnv]
|
|
if has_ray():
|
|
test_cls += [RayVectorEnv]
|
|
total_pass = 0
|
|
for cls in test_cls:
|
|
pass_check = 1
|
|
v = cls(env_fns, wait_num=num - 1, timeout=timeout)
|
|
t = time.time()
|
|
v.reset()
|
|
t = time.time() - t
|
|
print(f"{cls} reset {t}")
|
|
if t > sleep * 9: # huge than maximum sleep time (7 sleep)
|
|
pass_check = 0
|
|
expect_result = [
|
|
[0, 1],
|
|
[0, 1, 2],
|
|
[0, 1, 3],
|
|
[0, 1, 2],
|
|
[0, 1],
|
|
[0, 2, 3],
|
|
[0, 1],
|
|
]
|
|
ids = np.arange(num)
|
|
for res in expect_result:
|
|
t = time.time()
|
|
_, _, _, _, info = v.step([1] * len(ids), ids)
|
|
t = time.time() - t
|
|
ids = Batch(info).env_id
|
|
print(ids, t)
|
|
if not (
|
|
len(ids) == len(res) and np.allclose(sorted(ids), res) and
|
|
(t < timeout) == (len(res) == num - 1)
|
|
):
|
|
pass_check = 0
|
|
break
|
|
total_pass += pass_check
|
|
if sys.platform == "linux": # Windows/macOS may not pass this check
|
|
assert total_pass >= 2
|
|
|
|
|
|
def test_vecenv(size=10, num=8, sleep=0.001):
|
|
env_fns = [
|
|
lambda i=i: MyTestEnv(size=i, sleep=sleep, recurse_state=True)
|
|
for i in range(size, size + num)
|
|
]
|
|
venv = [
|
|
DummyVectorEnv(env_fns),
|
|
SubprocVectorEnv(env_fns),
|
|
ShmemVectorEnv(env_fns),
|
|
]
|
|
if has_ray() and sys.platform == "linux":
|
|
venv += [RayVectorEnv(env_fns)]
|
|
for v in venv:
|
|
v.seed(0)
|
|
action_list = [1] * 5 + [0] * 10 + [1] * 20
|
|
o = [v.reset()[0] for v in venv]
|
|
for a in action_list:
|
|
o = []
|
|
for v in venv:
|
|
A, B, C, D, E = v.step([a] * num)
|
|
if sum(C + D):
|
|
A, _ = v.reset(np.where(C + D)[0])
|
|
o.append([A, B, C, D, E])
|
|
for index, infos in enumerate(zip(*o)):
|
|
if index == 4: # do not check info here
|
|
continue
|
|
for info in infos:
|
|
assert recurse_comp(infos[0], info)
|
|
|
|
if __name__ == "__main__":
|
|
t = [0] * len(venv)
|
|
for i, e in enumerate(venv):
|
|
t[i] = time.time()
|
|
e.reset()
|
|
for a in action_list:
|
|
done = e.step([a] * num)[2]
|
|
if sum(done) > 0:
|
|
e.reset(np.where(done)[0])
|
|
t[i] = time.time() - t[i]
|
|
for i, v in enumerate(venv):
|
|
print(f"{type(v)}: {t[i]:.6f}s")
|
|
|
|
def assert_get(v, expected):
|
|
assert v.get_env_attr("size") == expected
|
|
assert v.get_env_attr("size", id=0) == [expected[0]]
|
|
assert v.get_env_attr("size", id=[0, 1, 2]) == expected[:3]
|
|
|
|
for v in venv:
|
|
assert_get(v, list(range(size, size + num)))
|
|
assert v.env_num == num
|
|
assert v.action_space == [Discrete(2)] * num
|
|
|
|
v.set_env_attr("size", 0)
|
|
assert_get(v, [0] * num)
|
|
|
|
v.set_env_attr("size", 1, 0)
|
|
assert_get(v, [1] + [0] * (num - 1))
|
|
|
|
v.set_env_attr("size", 2, [1, 2, 3])
|
|
assert_get(v, [1] + [2] * 3 + [0] * (num - 4))
|
|
|
|
for v in venv:
|
|
v.close()
|
|
|
|
|
|
def test_attr_unwrapped():
|
|
train_envs = DummyVectorEnv([lambda: gym.make("CartPole-v1")])
|
|
train_envs.set_env_attr("test_attribute", 1337)
|
|
assert train_envs.get_env_attr("test_attribute") == [1337]
|
|
assert hasattr(train_envs.workers[0].env, "test_attribute")
|
|
assert hasattr(train_envs.workers[0].env.unwrapped, "test_attribute")
|
|
|
|
|
|
def test_env_obs_dtype():
|
|
for obs_type in ["array", "object"]:
|
|
envs = SubprocVectorEnv(
|
|
[lambda i=x, t=obs_type: NXEnv(i, t) for x in [5, 10, 15, 20]]
|
|
)
|
|
obs, info = envs.reset()
|
|
assert obs.dtype == object
|
|
obs = envs.step([1, 1, 1, 1])[0]
|
|
assert obs.dtype == object
|
|
|
|
|
|
def test_env_reset_optional_kwargs(size=10000, num=8):
|
|
env_fns = [lambda i=i: MyTestEnv(size=i) for i in range(size, size + num)]
|
|
test_cls = [DummyVectorEnv, SubprocVectorEnv, ShmemVectorEnv]
|
|
if has_ray():
|
|
test_cls += [RayVectorEnv]
|
|
for cls in test_cls:
|
|
v = cls(env_fns, wait_num=num // 2, timeout=1e-3)
|
|
_, info = v.reset(seed=1)
|
|
assert len(info) == len(env_fns)
|
|
assert isinstance(info[0], dict)
|
|
|
|
|
|
def test_venv_wrapper_gym(num_envs: int = 4):
|
|
# Issue 697
|
|
envs = DummyVectorEnv([lambda: gym.make("CartPole-v1") for _ in range(num_envs)])
|
|
envs = VectorEnvNormObs(envs)
|
|
try:
|
|
obs, info = envs.reset()
|
|
except ValueError:
|
|
obs, info = envs.reset(return_info=True)
|
|
assert isinstance(obs, np.ndarray)
|
|
assert isinstance(info, list)
|
|
assert isinstance(info[0], dict)
|
|
assert obs.shape[0] == len(info) == num_envs
|
|
|
|
|
|
def run_align_norm_obs(raw_env, train_env, test_env, action_list):
|
|
|
|
def reset_result_to_obs(reset_result):
|
|
"""Extract observation from reset result
|
|
(result is possibly a tuple containing info)"""
|
|
if isinstance(reset_result, tuple) and len(reset_result) == 2:
|
|
obs, _ = reset_result
|
|
else:
|
|
obs = reset_result
|
|
return obs
|
|
|
|
eps = np.finfo(np.float32).eps.item()
|
|
raw_reset_result = raw_env.reset()
|
|
train_reset_result = train_env.reset()
|
|
initial_raw_obs = reset_result_to_obs(raw_reset_result)
|
|
initial_train_obs = reset_result_to_obs(train_reset_result)
|
|
raw_obs, train_obs = [initial_raw_obs], [initial_train_obs]
|
|
for action in action_list:
|
|
step_result = raw_env.step(action)
|
|
if len(step_result) == 5:
|
|
obs, rew, terminated, truncated, info = step_result
|
|
done = np.logical_or(terminated, truncated)
|
|
else:
|
|
obs, rew, done, info = step_result
|
|
raw_obs.append(obs)
|
|
if np.any(done):
|
|
reset_result = raw_env.reset(np.where(done)[0])
|
|
obs = reset_result_to_obs(reset_result)
|
|
raw_obs.append(obs)
|
|
step_result = train_env.step(action)
|
|
if len(step_result) == 5:
|
|
obs, rew, terminated, truncated, info = step_result
|
|
done = np.logical_or(terminated, truncated)
|
|
else:
|
|
obs, rew, done, info = step_result
|
|
train_obs.append(obs)
|
|
if np.any(done):
|
|
reset_result = train_env.reset(np.where(done)[0])
|
|
obs = reset_result_to_obs(reset_result)
|
|
train_obs.append(obs)
|
|
ref_rms = RunningMeanStd()
|
|
for ro, to in zip(raw_obs, train_obs):
|
|
ref_rms.update(ro)
|
|
no = (ro - ref_rms.mean) / np.sqrt(ref_rms.var + eps)
|
|
assert np.allclose(no, to)
|
|
assert np.allclose(ref_rms.mean, train_env.get_obs_rms().mean)
|
|
assert np.allclose(ref_rms.var, train_env.get_obs_rms().var)
|
|
assert np.allclose(ref_rms.mean, test_env.get_obs_rms().mean)
|
|
assert np.allclose(ref_rms.var, test_env.get_obs_rms().var)
|
|
reset_result = test_env.reset()
|
|
obs = reset_result_to_obs(reset_result)
|
|
test_obs = [obs]
|
|
for action in action_list:
|
|
step_result = test_env.step(action)
|
|
if len(step_result) == 5:
|
|
obs, rew, terminated, truncated, info = step_result
|
|
done = np.logical_or(terminated, truncated)
|
|
else:
|
|
obs, rew, done, info = step_result
|
|
test_obs.append(obs)
|
|
if np.any(done):
|
|
reset_result = test_env.reset(np.where(done)[0])
|
|
obs = reset_result_to_obs(reset_result)
|
|
test_obs.append(obs)
|
|
for ro, to in zip(raw_obs, test_obs):
|
|
no = (ro - ref_rms.mean) / np.sqrt(ref_rms.var + eps)
|
|
assert np.allclose(no, to)
|
|
|
|
|
|
def test_venv_norm_obs():
|
|
sizes = np.array([5, 10, 15, 20])
|
|
action = np.array([1, 1, 1, 1])
|
|
total_step = 30
|
|
action_list = [action] * total_step
|
|
env_fns = [lambda i=x: MyTestEnv(size=i, array_state=True) for x in sizes]
|
|
raw = DummyVectorEnv(env_fns)
|
|
train_env = VectorEnvNormObs(DummyVectorEnv(env_fns))
|
|
print(train_env.observation_space)
|
|
test_env = VectorEnvNormObs(DummyVectorEnv(env_fns), update_obs_rms=False)
|
|
test_env.set_obs_rms(train_env.get_obs_rms())
|
|
run_align_norm_obs(raw, train_env, test_env, action_list)
|
|
|
|
|
|
def test_gym_wrappers():
|
|
|
|
class DummyEnv(gym.Env):
|
|
|
|
def __init__(self):
|
|
self.action_space = gym.spaces.Box(
|
|
low=-1.0, high=2.0, shape=(4, ), dtype=np.float32
|
|
)
|
|
self.observation_space = gym.spaces.Discrete(2)
|
|
|
|
def step(self, act):
|
|
return self.observation_space.sample(), -1, False, True, {}
|
|
|
|
bsz = 10
|
|
action_per_branch = [4, 6, 10, 7]
|
|
env = DummyEnv()
|
|
original_act = env.action_space.high
|
|
# convert continous to multidiscrete action space
|
|
# with different action number per dimension
|
|
env_m = ContinuousToDiscrete(env, action_per_branch)
|
|
# check conversion is working properly for one action
|
|
np.testing.assert_allclose(env_m.action(env_m.action_space.nvec - 1), original_act)
|
|
# check conversion is working properly for a batch of actions
|
|
np.testing.assert_allclose(
|
|
env_m.action(np.array([env_m.action_space.nvec - 1] * bsz)),
|
|
np.array([original_act] * bsz),
|
|
)
|
|
# convert multidiscrete with different action number per
|
|
# dimension to discrete action space
|
|
env_d = MultiDiscreteToDiscrete(env_m)
|
|
# check conversion is working properly for one action
|
|
np.testing.assert_allclose(
|
|
env_d.action(env_d.action_space.n - 1), env_m.action_space.nvec - 1
|
|
)
|
|
# check conversion is working properly for a batch of actions
|
|
np.testing.assert_allclose(
|
|
env_d.action(np.array([env_d.action_space.n - 1] * bsz)),
|
|
np.array([env_m.action_space.nvec - 1] * bsz),
|
|
)
|
|
# check truncate is True when terminated
|
|
try:
|
|
env_t = TruncatedAsTerminated(env)
|
|
except EnvironmentError:
|
|
env_t = None
|
|
if env_t is not None:
|
|
_, _, truncated, _, _ = env_t.step(env_t.action_space.sample())
|
|
assert truncated
|
|
|
|
|
|
@pytest.mark.skipif(envpool is None, reason="EnvPool doesn't support this platform")
|
|
def test_venv_wrapper_envpool():
|
|
raw = envpool.make_gym("Ant-v3", num_envs=4)
|
|
train = VectorEnvNormObs(envpool.make_gym("Ant-v3", num_envs=4))
|
|
test = VectorEnvNormObs(
|
|
envpool.make_gym("Ant-v3", num_envs=4), update_obs_rms=False
|
|
)
|
|
test.set_obs_rms(train.get_obs_rms())
|
|
actions = [
|
|
np.array([raw.action_space.sample() for _ in range(4)]) for i in range(30)
|
|
]
|
|
run_align_norm_obs(raw, train, test, actions)
|
|
|
|
|
|
@pytest.mark.skipif(envpool is None, reason="EnvPool doesn't support this platform")
|
|
def test_venv_wrapper_envpool_gym_reset_return_info():
|
|
num_envs = 4
|
|
env = VectorEnvNormObs(
|
|
envpool.make_gym("Ant-v3", num_envs=num_envs, gym_reset_return_info=True)
|
|
)
|
|
obs, info = env.reset()
|
|
assert obs.shape[0] == num_envs
|
|
for _, v in info.items():
|
|
if not isinstance(v, dict):
|
|
assert v.shape[0] == num_envs
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test_venv_norm_obs()
|
|
test_venv_wrapper_gym()
|
|
test_venv_wrapper_envpool()
|
|
test_venv_wrapper_envpool_gym_reset_return_info()
|
|
test_env_obs_dtype()
|
|
test_vecenv()
|
|
test_attr_unwrapped()
|
|
test_async_env()
|
|
test_async_check_id()
|
|
test_env_reset_optional_kwargs()
|
|
test_gym_wrappers()
|