2017-12-10 13:31:43 +08:00

129 lines
4.3 KiB
Python

import numpy as np
import gc
# TODO: Refactor with tf.train.slice_input_producer, tf.train.Coordinator, tf.train.QueueRunner
class Batch(object):
"""
class for batch datasets. Collect multiple states (actions, rewards, etc.) on-policy.
"""
def __init__(self, env, pi, adv_estimation_func): # how to name the function?
self.env = env
self.pi = pi
self.adv_estimation_func = adv_estimation_func
self.is_first_collect = True
def collect(self, num_timesteps=0, num_episodes=0, apply_func=True): # specify how many data to collect here, or fix it in __init__()
assert sum([num_timesteps > 0, num_episodes > 0]) == 1, "One and only one collection number specification permitted!"
if num_timesteps > 0: # YouQiaoben: finish this implementation, the following code are just from openai/baselines
t = 0
ac = self.env.action_space.sample() # not used, just so we have the datatype
new = True # marks if we're on first timestep of an episode
if self.is_first_collect:
ob = self.env.reset()
self.is_first_collect = False
else:
ob = self.raw_data['obs'][0] # last observation!
# Initialize history arrays
obs = np.array([ob for _ in range(num_timesteps)])
rews = np.zeros(num_timesteps, 'float32')
news = np.zeros(num_timesteps, 'int32')
acs = np.array([ac for _ in range(num_timesteps)])
for t in range(num_timesteps):
pass
while True:
prevac = ac
ac, vpred = pi.act(stochastic, ob)
# Slight weirdness here because we need value function at time T
# before returning segment [0, T-1] so we get the correct
# terminal value
i = t % horizon
obs[i] = ob
vpreds[i] = vpred
news[i] = new
acs[i] = ac
prevacs[i] = prevac
ob, rew, new, _ = env.step(ac)
rews[i] = rew
cur_ep_ret += rew
cur_ep_len += 1
if new:
ep_rets.append(cur_ep_ret)
ep_lens.append(cur_ep_len)
cur_ep_ret = 0
cur_ep_len = 0
ob = env.reset()
t += 1
if num_episodes > 0: # YouQiaoben: fix memory growth, both del and gc.collect() fail
# initialize rawdata lists
if not self.is_first_collect:
del self.obs
del self.acs
del self.rews
del self.news
obs = []
acs = []
rews = []
news = []
t_count = 0
for e in range(num_episodes):
ob = self.env.reset()
obs.append(ob)
news.append(True)
while True:
ac = self.pi.act(ob)
acs.append(ac)
ob, rew, done, _ = self.env.step(ac)
rews.append(rew)
t_count += 1
if t_count >= 200: # force episode stop
break
if done: # end of episode, discard s_T
break
else:
obs.append(ob)
news.append(False)
self.obs = np.array(obs)
self.acs = np.array(acs)
self.rews = np.array(rews)
self.news = np.array(news)
del obs
del acs
del rews
del news
self.raw_data = {'obs': self.obs, 'acs': self.acs, 'rews': self.rews, 'news': self.news}
self.is_first_collect = False
if apply_func:
self.apply_adv_estimation_func()
gc.collect()
def apply_adv_estimation_func(self):
self.data = self.adv_estimation_func(self.raw_data)
def next_batch(self, batch_size): # YouQiaoben: referencing other iterate over batches
rand_idx = np.random.choice(self.data['obs'].shape[0], batch_size)
return {key: value[rand_idx] for key, value in self.data.items()}