Closes #947 This removes all kwargs from all policy constructors. While doing that, I also improved several names and added a whole lot of TODOs. ## Functional changes: 1. Added possibility to pass None as `critic2` and `critic2_optim`. In fact, the default behavior then should cover the absolute majority of cases 2. Added a function called `clone_optimizer` as a temporary measure to support passing `critic2_optim=None` ## Breaking changes: 1. `action_space` is no longer optional. In fact, it already was non-optional, as there was a ValueError in BasePolicy.init. So now several examples were fixed to reflect that 2. `reward_normalization` removed from DDPG and children. It was never allowed to pass it as `True` there, an error would have been raised in `compute_n_step_reward`. Now I removed it from the interface 3. renamed `critic1` and similar to `critic`, in order to have uniform interfaces. Note that the `critic` in DDPG was optional for the sole reason that child classes used `critic1`. I removed this optionality (DDPG can't do anything with `critic=None`) 4. Several renamings of fields (mostly private to public, so backwards compatible) ## Additional changes: 1. Removed type and default declaration from docstring. This kind of duplication is really not necessary 2. Policy constructors are now only called using named arguments, not a fragile mixture of positional and named as before 5. Minor beautifications in typing and code 6. Generally shortened docstrings and made them uniform across all policies (hopefully) ## Comment: With these changes, several problems in tianshou's inheritance hierarchy become more apparent. I tried highlighting them for future work. --------- Co-authored-by: Dominik Jain <d.jain@appliedai.de>
		
			
				
	
	
		
			232 lines
		
	
	
		
			9.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			232 lines
		
	
	
		
			9.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import argparse
 | 
						|
import os
 | 
						|
import pickle
 | 
						|
import pprint
 | 
						|
 | 
						|
import gymnasium as gym
 | 
						|
import numpy as np
 | 
						|
import torch
 | 
						|
from torch.distributions import Independent, Normal
 | 
						|
from torch.utils.tensorboard import SummaryWriter
 | 
						|
 | 
						|
from tianshou.data import Collector, VectorReplayBuffer
 | 
						|
from tianshou.env import DummyVectorEnv
 | 
						|
from tianshou.policy import GAILPolicy
 | 
						|
from tianshou.trainer import OnpolicyTrainer
 | 
						|
from tianshou.utils import TensorboardLogger
 | 
						|
from tianshou.utils.net.common import ActorCritic, Net
 | 
						|
from tianshou.utils.net.continuous import ActorProb, Critic
 | 
						|
 | 
						|
if __name__ == "__main__":
 | 
						|
    from gather_pendulum_data import expert_file_name, gather_data
 | 
						|
else:  # pytest
 | 
						|
    from test.offline.gather_pendulum_data import expert_file_name, gather_data
 | 
						|
 | 
						|
 | 
						|
def get_args():
 | 
						|
    parser = argparse.ArgumentParser()
 | 
						|
    parser.add_argument("--task", type=str, default="Pendulum-v1")
 | 
						|
    parser.add_argument("--reward-threshold", type=float, default=None)
 | 
						|
    parser.add_argument("--seed", type=int, default=1)
 | 
						|
    parser.add_argument("--buffer-size", type=int, default=20000)
 | 
						|
    parser.add_argument("--lr", type=float, default=1e-3)
 | 
						|
    parser.add_argument("--disc-lr", type=float, default=5e-4)
 | 
						|
    parser.add_argument("--gamma", type=float, default=0.95)
 | 
						|
    parser.add_argument("--epoch", type=int, default=5)
 | 
						|
    parser.add_argument("--step-per-epoch", type=int, default=150000)
 | 
						|
    parser.add_argument("--episode-per-collect", type=int, default=16)
 | 
						|
    parser.add_argument("--repeat-per-collect", type=int, default=2)
 | 
						|
    parser.add_argument("--disc-update-num", type=int, default=2)
 | 
						|
    parser.add_argument("--batch-size", type=int, default=128)
 | 
						|
    parser.add_argument("--hidden-sizes", type=int, nargs="*", default=[64, 64])
 | 
						|
    parser.add_argument("--training-num", type=int, default=16)
 | 
						|
    parser.add_argument("--test-num", type=int, default=100)
 | 
						|
    parser.add_argument("--logdir", type=str, default="log")
 | 
						|
    parser.add_argument("--render", type=float, default=0.0)
 | 
						|
    parser.add_argument(
 | 
						|
        "--device",
 | 
						|
        type=str,
 | 
						|
        default="cuda" if torch.cuda.is_available() else "cpu",
 | 
						|
    )
 | 
						|
    # ppo special
 | 
						|
    parser.add_argument("--vf-coef", type=float, default=0.25)
 | 
						|
    parser.add_argument("--ent-coef", type=float, default=0.0)
 | 
						|
    parser.add_argument("--eps-clip", type=float, default=0.2)
 | 
						|
    parser.add_argument("--max-grad-norm", type=float, default=0.5)
 | 
						|
    parser.add_argument("--gae-lambda", type=float, default=0.95)
 | 
						|
    parser.add_argument("--rew-norm", type=int, default=1)
 | 
						|
    parser.add_argument("--dual-clip", type=float, default=None)
 | 
						|
    parser.add_argument("--value-clip", type=int, default=1)
 | 
						|
    parser.add_argument("--norm-adv", type=int, default=1)
 | 
						|
    parser.add_argument("--recompute-adv", type=int, default=0)
 | 
						|
    parser.add_argument("--resume", action="store_true")
 | 
						|
    parser.add_argument("--save-interval", type=int, default=4)
 | 
						|
    parser.add_argument("--load-buffer-name", type=str, default=expert_file_name())
 | 
						|
    return parser.parse_known_args()[0]
 | 
						|
 | 
						|
 | 
						|
def test_gail(args=get_args()):
 | 
						|
    if os.path.exists(args.load_buffer_name) and os.path.isfile(args.load_buffer_name):
 | 
						|
        if args.load_buffer_name.endswith(".hdf5"):
 | 
						|
            buffer = VectorReplayBuffer.load_hdf5(args.load_buffer_name)
 | 
						|
        else:
 | 
						|
            with open(args.load_buffer_name, "rb") as f:
 | 
						|
                buffer = pickle.load(f)
 | 
						|
    else:
 | 
						|
        buffer = gather_data()
 | 
						|
    env = gym.make(args.task)
 | 
						|
    if args.reward_threshold is None:
 | 
						|
        default_reward_threshold = {"Pendulum-v0": -1100, "Pendulum-v1": -1100}
 | 
						|
        args.reward_threshold = default_reward_threshold.get(args.task, env.spec.reward_threshold)
 | 
						|
    args.state_shape = env.observation_space.shape or env.observation_space.n
 | 
						|
    args.action_shape = env.action_space.shape or env.action_space.n
 | 
						|
    args.max_action = env.action_space.high[0]
 | 
						|
    # you can also use tianshou.env.SubprocVectorEnv
 | 
						|
    # train_envs = gym.make(args.task)
 | 
						|
    train_envs = DummyVectorEnv([lambda: gym.make(args.task) for _ in range(args.training_num)])
 | 
						|
    # test_envs = gym.make(args.task)
 | 
						|
    test_envs = DummyVectorEnv([lambda: gym.make(args.task) for _ in range(args.test_num)])
 | 
						|
    # seed
 | 
						|
    np.random.seed(args.seed)
 | 
						|
    torch.manual_seed(args.seed)
 | 
						|
    train_envs.seed(args.seed)
 | 
						|
    test_envs.seed(args.seed)
 | 
						|
    # model
 | 
						|
    net = Net(args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device)
 | 
						|
    actor = ActorProb(net, args.action_shape, max_action=args.max_action, device=args.device).to(
 | 
						|
        args.device,
 | 
						|
    )
 | 
						|
    critic = Critic(
 | 
						|
        Net(args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device),
 | 
						|
        device=args.device,
 | 
						|
    ).to(args.device)
 | 
						|
    actor_critic = ActorCritic(actor, critic)
 | 
						|
    # orthogonal initialization
 | 
						|
    for m in actor_critic.modules():
 | 
						|
        if isinstance(m, torch.nn.Linear):
 | 
						|
            torch.nn.init.orthogonal_(m.weight)
 | 
						|
            torch.nn.init.zeros_(m.bias)
 | 
						|
    optim = torch.optim.Adam(actor_critic.parameters(), lr=args.lr)
 | 
						|
    # discriminator
 | 
						|
    disc_net = Critic(
 | 
						|
        Net(
 | 
						|
            args.state_shape,
 | 
						|
            action_shape=args.action_shape,
 | 
						|
            hidden_sizes=args.hidden_sizes,
 | 
						|
            activation=torch.nn.Tanh,
 | 
						|
            device=args.device,
 | 
						|
            concat=True,
 | 
						|
        ),
 | 
						|
        device=args.device,
 | 
						|
    ).to(args.device)
 | 
						|
    for m in disc_net.modules():
 | 
						|
        if isinstance(m, torch.nn.Linear):
 | 
						|
            # orthogonal initialization
 | 
						|
            torch.nn.init.orthogonal_(m.weight, gain=np.sqrt(2))
 | 
						|
            torch.nn.init.zeros_(m.bias)
 | 
						|
    disc_optim = torch.optim.Adam(disc_net.parameters(), lr=args.disc_lr)
 | 
						|
 | 
						|
    # replace DiagGuassian with Independent(Normal) which is equivalent
 | 
						|
    # pass *logits to be consistent with policy.forward
 | 
						|
    def dist(*logits):
 | 
						|
        return Independent(Normal(*logits), 1)
 | 
						|
 | 
						|
    policy = GAILPolicy(
 | 
						|
        actor=actor,
 | 
						|
        critic=critic,
 | 
						|
        optim=optim,
 | 
						|
        dist_fn=dist,
 | 
						|
        expert_buffer=buffer,
 | 
						|
        disc_net=disc_net,
 | 
						|
        disc_optim=disc_optim,
 | 
						|
        disc_update_num=args.disc_update_num,
 | 
						|
        discount_factor=args.gamma,
 | 
						|
        max_grad_norm=args.max_grad_norm,
 | 
						|
        eps_clip=args.eps_clip,
 | 
						|
        vf_coef=args.vf_coef,
 | 
						|
        ent_coef=args.ent_coef,
 | 
						|
        reward_normalization=args.rew_norm,
 | 
						|
        advantage_normalization=args.norm_adv,
 | 
						|
        recompute_advantage=args.recompute_adv,
 | 
						|
        dual_clip=args.dual_clip,
 | 
						|
        value_clip=args.value_clip,
 | 
						|
        gae_lambda=args.gae_lambda,
 | 
						|
        action_space=env.action_space,
 | 
						|
    )
 | 
						|
    # collector
 | 
						|
    train_collector = Collector(
 | 
						|
        policy,
 | 
						|
        train_envs,
 | 
						|
        VectorReplayBuffer(args.buffer_size, len(train_envs)),
 | 
						|
    )
 | 
						|
    test_collector = Collector(policy, test_envs)
 | 
						|
    # log
 | 
						|
    log_path = os.path.join(args.logdir, args.task, "gail")
 | 
						|
    writer = SummaryWriter(log_path)
 | 
						|
    logger = TensorboardLogger(writer, save_interval=args.save_interval)
 | 
						|
 | 
						|
    def save_best_fn(policy):
 | 
						|
        torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth"))
 | 
						|
 | 
						|
    def stop_fn(mean_rewards):
 | 
						|
        return mean_rewards >= args.reward_threshold
 | 
						|
 | 
						|
    def save_checkpoint_fn(epoch, env_step, gradient_step):
 | 
						|
        # see also: https://pytorch.org/tutorials/beginner/saving_loading_models.html
 | 
						|
        ckpt_path = os.path.join(log_path, "checkpoint.pth")
 | 
						|
        # Example: saving by epoch num
 | 
						|
        # ckpt_path = os.path.join(log_path, f"checkpoint_{epoch}.pth")
 | 
						|
        torch.save(
 | 
						|
            {
 | 
						|
                "model": policy.state_dict(),
 | 
						|
                "optim": optim.state_dict(),
 | 
						|
            },
 | 
						|
            ckpt_path,
 | 
						|
        )
 | 
						|
        return ckpt_path
 | 
						|
 | 
						|
    if args.resume:
 | 
						|
        # load from existing checkpoint
 | 
						|
        print(f"Loading agent under {log_path}")
 | 
						|
        ckpt_path = os.path.join(log_path, "checkpoint.pth")
 | 
						|
        if os.path.exists(ckpt_path):
 | 
						|
            checkpoint = torch.load(ckpt_path, map_location=args.device)
 | 
						|
            policy.load_state_dict(checkpoint["model"])
 | 
						|
            optim.load_state_dict(checkpoint["optim"])
 | 
						|
            print("Successfully restore policy and optim.")
 | 
						|
        else:
 | 
						|
            print("Fail to restore policy and optim.")
 | 
						|
 | 
						|
    # trainer
 | 
						|
    result = OnpolicyTrainer(
 | 
						|
        policy=policy,
 | 
						|
        train_collector=train_collector,
 | 
						|
        test_collector=test_collector,
 | 
						|
        max_epoch=args.epoch,
 | 
						|
        step_per_epoch=args.step_per_epoch,
 | 
						|
        repeat_per_collect=args.repeat_per_collect,
 | 
						|
        episode_per_test=args.test_num,
 | 
						|
        batch_size=args.batch_size,
 | 
						|
        episode_per_collect=args.episode_per_collect,
 | 
						|
        stop_fn=stop_fn,
 | 
						|
        save_best_fn=save_best_fn,
 | 
						|
        logger=logger,
 | 
						|
        resume_from_log=args.resume,
 | 
						|
        save_checkpoint_fn=save_checkpoint_fn,
 | 
						|
    ).run()
 | 
						|
    assert stop_fn(result["best_reward"])
 | 
						|
 | 
						|
    if __name__ == "__main__":
 | 
						|
        pprint.pprint(result)
 | 
						|
        # Let's watch its performance!
 | 
						|
        env = gym.make(args.task)
 | 
						|
        policy.eval()
 | 
						|
        collector = Collector(policy, env)
 | 
						|
        result = collector.collect(n_episode=1, render=args.render)
 | 
						|
        rews, lens = result["rews"], result["lens"]
 | 
						|
        print(f"Final reward: {rews.mean()}, length: {lens.mean()}")
 | 
						|
 | 
						|
 | 
						|
if __name__ == "__main__":
 | 
						|
    test_gail()
 |