Tianshou/examples/mujoco/mujoco_redq_hl.py
Dominik Jain dae4000cd2 Revert "Depend on sensAI instead of copying its utils (logging, string)"
This reverts commit fdb0eba93d81fa5e698770b4f7088c87fc1238da.
2023-11-08 19:11:39 +01:00

86 lines
2.5 KiB
Python

#!/usr/bin/env python3
import os
from collections.abc import Sequence
from typing import Literal
from examples.mujoco.mujoco_env import MujocoEnvFactory
from tianshou.highlevel.config import SamplingConfig
from tianshou.highlevel.experiment import (
ExperimentConfig,
REDQExperimentBuilder,
)
from tianshou.highlevel.params.alpha import AutoAlphaFactoryDefault
from tianshou.highlevel.params.policy_params import REDQParams
from tianshou.utils import logging
from tianshou.utils.logging import datetime_tag
def main(
experiment_config: ExperimentConfig,
task: str = "Ant-v3",
buffer_size: int = 1000000,
hidden_sizes: Sequence[int] = (256, 256),
ensemble_size: int = 10,
subset_size: int = 2,
actor_lr: float = 1e-3,
critic_lr: float = 1e-3,
gamma: float = 0.99,
tau: float = 0.005,
alpha: float = 0.2,
auto_alpha: bool = False,
alpha_lr: float = 3e-4,
start_timesteps: int = 10000,
epoch: int = 200,
step_per_epoch: int = 5000,
step_per_collect: int = 1,
update_per_step: int = 20,
n_step: int = 1,
batch_size: int = 256,
target_mode: Literal["mean", "min"] = "min",
training_num: int = 1,
test_num: int = 10,
):
log_name = os.path.join(task, "redq", str(experiment_config.seed), datetime_tag())
sampling_config = SamplingConfig(
num_epochs=epoch,
step_per_epoch=step_per_epoch,
batch_size=batch_size,
num_train_envs=training_num,
num_test_envs=test_num,
buffer_size=buffer_size,
step_per_collect=step_per_collect,
update_per_step=update_per_step,
repeat_per_collect=None,
start_timesteps=start_timesteps,
start_timesteps_random=True,
)
env_factory = MujocoEnvFactory(task, experiment_config.seed, obs_norm=False)
experiment = (
REDQExperimentBuilder(env_factory, experiment_config, sampling_config)
.with_redq_params(
REDQParams(
actor_lr=actor_lr,
critic_lr=critic_lr,
gamma=gamma,
tau=tau,
alpha=AutoAlphaFactoryDefault(lr=alpha_lr) if auto_alpha else alpha,
estimation_step=n_step,
target_mode=target_mode,
subset_size=subset_size,
ensemble_size=ensemble_size,
),
)
.with_actor_factory_default(hidden_sizes)
.with_critic_ensemble_factory_default(hidden_sizes)
.build()
)
experiment.run(log_name)
if __name__ == "__main__":
logging.run_cli(main)