Dominik Jain dae4000cd2 Revert "Depend on sensAI instead of copying its utils (logging, string)"
This reverts commit fdb0eba93d81fa5e698770b4f7088c87fc1238da.
2023-11-08 19:11:39 +01:00

81 lines
2.4 KiB
Python

from abc import ABC, abstractmethod
from typing import Any, Protocol
import torch
from torch.optim import Adam, RMSprop
from tianshou.utils.string import ToStringMixin
class OptimizerWithLearningRateProtocol(Protocol):
def __call__(self, parameters: Any, lr: float, **kwargs: Any) -> torch.optim.Optimizer:
pass
class OptimizerFactory(ABC, ToStringMixin):
@abstractmethod
def create_optimizer(self, module: torch.nn.Module, lr: float) -> torch.optim.Optimizer:
pass
class OptimizerFactoryTorch(OptimizerFactory):
def __init__(self, optim_class: OptimizerWithLearningRateProtocol, **kwargs: Any):
""":param optim_class: the optimizer class (e.g. subclass of `torch.optim.Optimizer`),
which will be passed the module parameters, the learning rate as `lr` and the
kwargs provided.
:param kwargs: keyword arguments to provide at optimizer construction
"""
self.optim_class = optim_class
self.kwargs = kwargs
def create_optimizer(self, module: torch.nn.Module, lr: float) -> torch.optim.Optimizer:
return self.optim_class(module.parameters(), lr=lr, **self.kwargs)
class OptimizerFactoryAdam(OptimizerFactory):
def __init__(
self,
betas: tuple[float, float] = (0.9, 0.999),
eps: float = 1e-08,
weight_decay: float = 0,
):
self.weight_decay = weight_decay
self.eps = eps
self.betas = betas
def create_optimizer(self, module: torch.nn.Module, lr: float) -> Adam:
return Adam(
module.parameters(),
lr=lr,
betas=self.betas,
eps=self.eps,
weight_decay=self.weight_decay,
)
class OptimizerFactoryRMSprop(OptimizerFactory):
def __init__(
self,
alpha: float = 0.99,
eps: float = 1e-08,
weight_decay: float = 0,
momentum: float = 0,
centered: bool = False,
):
self.alpha = alpha
self.momentum = momentum
self.centered = centered
self.weight_decay = weight_decay
self.eps = eps
def create_optimizer(self, module: torch.nn.Module, lr: float) -> RMSprop:
return RMSprop(
module.parameters(),
lr=lr,
alpha=self.alpha,
eps=self.eps,
weight_decay=self.weight_decay,
momentum=self.momentum,
centered=self.centered,
)