81 lines
2.4 KiB
Python
81 lines
2.4 KiB
Python
from abc import ABC, abstractmethod
|
|
from typing import Any, Protocol
|
|
|
|
import torch
|
|
from torch.optim import Adam, RMSprop
|
|
|
|
from tianshou.utils.string import ToStringMixin
|
|
|
|
|
|
class OptimizerWithLearningRateProtocol(Protocol):
|
|
def __call__(self, parameters: Any, lr: float, **kwargs: Any) -> torch.optim.Optimizer:
|
|
pass
|
|
|
|
|
|
class OptimizerFactory(ABC, ToStringMixin):
|
|
@abstractmethod
|
|
def create_optimizer(self, module: torch.nn.Module, lr: float) -> torch.optim.Optimizer:
|
|
pass
|
|
|
|
|
|
class OptimizerFactoryTorch(OptimizerFactory):
|
|
def __init__(self, optim_class: OptimizerWithLearningRateProtocol, **kwargs: Any):
|
|
""":param optim_class: the optimizer class (e.g. subclass of `torch.optim.Optimizer`),
|
|
which will be passed the module parameters, the learning rate as `lr` and the
|
|
kwargs provided.
|
|
:param kwargs: keyword arguments to provide at optimizer construction
|
|
"""
|
|
self.optim_class = optim_class
|
|
self.kwargs = kwargs
|
|
|
|
def create_optimizer(self, module: torch.nn.Module, lr: float) -> torch.optim.Optimizer:
|
|
return self.optim_class(module.parameters(), lr=lr, **self.kwargs)
|
|
|
|
|
|
class OptimizerFactoryAdam(OptimizerFactory):
|
|
def __init__(
|
|
self,
|
|
betas: tuple[float, float] = (0.9, 0.999),
|
|
eps: float = 1e-08,
|
|
weight_decay: float = 0,
|
|
):
|
|
self.weight_decay = weight_decay
|
|
self.eps = eps
|
|
self.betas = betas
|
|
|
|
def create_optimizer(self, module: torch.nn.Module, lr: float) -> Adam:
|
|
return Adam(
|
|
module.parameters(),
|
|
lr=lr,
|
|
betas=self.betas,
|
|
eps=self.eps,
|
|
weight_decay=self.weight_decay,
|
|
)
|
|
|
|
|
|
class OptimizerFactoryRMSprop(OptimizerFactory):
|
|
def __init__(
|
|
self,
|
|
alpha: float = 0.99,
|
|
eps: float = 1e-08,
|
|
weight_decay: float = 0,
|
|
momentum: float = 0,
|
|
centered: bool = False,
|
|
):
|
|
self.alpha = alpha
|
|
self.momentum = momentum
|
|
self.centered = centered
|
|
self.weight_decay = weight_decay
|
|
self.eps = eps
|
|
|
|
def create_optimizer(self, module: torch.nn.Module, lr: float) -> RMSprop:
|
|
return RMSprop(
|
|
module.parameters(),
|
|
lr=lr,
|
|
alpha=self.alpha,
|
|
eps=self.eps,
|
|
weight_decay=self.weight_decay,
|
|
momentum=self.momentum,
|
|
centered=self.centered,
|
|
)
|