109 lines
		
	
	
		
			4.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			109 lines
		
	
	
		
			4.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import torch
 | |
| import pprint
 | |
| import argparse
 | |
| import numpy as np
 | |
| from torch.utils.tensorboard import SummaryWriter
 | |
| 
 | |
| from tianshou.policy import A2CPolicy
 | |
| from tianshou.env import SubprocVectorEnv
 | |
| from tianshou.trainer import onpolicy_trainer
 | |
| from tianshou.data import Collector, ReplayBuffer
 | |
| from tianshou.env.atari import create_atari_environment
 | |
| 
 | |
| from discrete_net import Net, Actor, Critic
 | |
| 
 | |
| 
 | |
| def get_args():
 | |
|     parser = argparse.ArgumentParser()
 | |
|     parser.add_argument('--task', type=str, default='Pong')
 | |
|     parser.add_argument('--seed', type=int, default=1626)
 | |
|     parser.add_argument('--buffer-size', type=int, default=20000)
 | |
|     parser.add_argument('--lr', type=float, default=3e-4)
 | |
|     parser.add_argument('--gamma', type=float, default=0.9)
 | |
|     parser.add_argument('--epoch', type=int, default=100)
 | |
|     parser.add_argument('--step-per-epoch', type=int, default=1000)
 | |
|     parser.add_argument('--collect-per-step', type=int, default=100)
 | |
|     parser.add_argument('--repeat-per-collect', type=int, default=1)
 | |
|     parser.add_argument('--batch-size', type=int, default=64)
 | |
|     parser.add_argument('--layer-num', type=int, default=2)
 | |
|     parser.add_argument('--training-num', type=int, default=8)
 | |
|     parser.add_argument('--test-num', type=int, default=8)
 | |
|     parser.add_argument('--logdir', type=str, default='log')
 | |
|     parser.add_argument('--render', type=float, default=0.)
 | |
| 
 | |
|     parser.add_argument(
 | |
|         '--device', type=str,
 | |
|         default='cuda' if torch.cuda.is_available() else 'cpu')
 | |
|     # a2c special
 | |
|     parser.add_argument('--vf-coef', type=float, default=0.5)
 | |
|     parser.add_argument('--ent-coef', type=float, default=0.001)
 | |
|     parser.add_argument('--max-grad-norm', type=float, default=None)
 | |
|     parser.add_argument('--max_episode_steps', type=int, default=2000)
 | |
|     args = parser.parse_known_args()[0]
 | |
|     return args
 | |
| 
 | |
| 
 | |
| def test_a2c(args=get_args()):
 | |
|     env = create_atari_environment(
 | |
|         args.task, max_episode_steps=args.max_episode_steps)
 | |
|     args.state_shape = env.observation_space.shape or env.observation_space.n
 | |
|     args.action_shape = env.env.action_space.shape or env.env.action_space.n
 | |
|     # train_envs = gym.make(args.task)
 | |
|     train_envs = SubprocVectorEnv(
 | |
|         [lambda: create_atari_environment(
 | |
|             args.task, max_episode_steps=args.max_episode_steps)
 | |
|             for _ in range(args.training_num)])
 | |
|     # test_envs = gym.make(args.task)
 | |
|     test_envs = SubprocVectorEnv(
 | |
|         [lambda: create_atari_environment(
 | |
|             args.task, max_episode_steps=args.max_episode_steps)
 | |
|             for _ in range(args.test_num)])
 | |
|     # seed
 | |
|     np.random.seed(args.seed)
 | |
|     torch.manual_seed(args.seed)
 | |
|     train_envs.seed(args.seed)
 | |
|     test_envs.seed(args.seed)
 | |
|     # model
 | |
|     net = Net(args.layer_num, args.state_shape, device=args.device)
 | |
|     actor = Actor(net, args.action_shape).to(args.device)
 | |
|     critic = Critic(net).to(args.device)
 | |
|     optim = torch.optim.Adam(list(
 | |
|         actor.parameters()) + list(critic.parameters()), lr=args.lr)
 | |
|     dist = torch.distributions.Categorical
 | |
|     policy = A2CPolicy(
 | |
|         actor, critic, optim, dist, args.gamma, vf_coef=args.vf_coef,
 | |
|         ent_coef=args.ent_coef, max_grad_norm=args.max_grad_norm)
 | |
|     # collector
 | |
|     train_collector = Collector(
 | |
|         policy, train_envs, ReplayBuffer(args.buffer_size))
 | |
|     test_collector = Collector(policy, test_envs)
 | |
|     # log
 | |
|     writer = SummaryWriter(args.logdir + '/' + 'a2c')
 | |
| 
 | |
|     def stop_fn(x):
 | |
|         if env.env.spec.reward_threshold:
 | |
|             return x >= env.spec.reward_threshold
 | |
|         else:
 | |
|             return False
 | |
| 
 | |
|     # trainer
 | |
|     result = onpolicy_trainer(
 | |
|         policy, train_collector, test_collector, args.epoch,
 | |
|         args.step_per_epoch, args.collect_per_step, args.repeat_per_collect,
 | |
|         args.test_num, args.batch_size, stop_fn=stop_fn, writer=writer,
 | |
|         task=args.task)
 | |
|     train_collector.close()
 | |
|     test_collector.close()
 | |
|     if __name__ == '__main__':
 | |
|         pprint.pprint(result)
 | |
|         # Let's watch its performance!
 | |
|         env = create_atari_environment(args.task)
 | |
|         collector = Collector(policy, env)
 | |
|         result = collector.collect(n_episode=1, render=args.render)
 | |
|         print(f'Final reward: {result["rew"]}, length: {result["len"]}')
 | |
|         collector.close()
 | |
| 
 | |
| 
 | |
| if __name__ == '__main__':
 | |
|     test_a2c()
 |