154 lines
		
	
	
		
			5.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			154 lines
		
	
	
		
			5.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import argparse
 | 
						|
import os
 | 
						|
import pprint
 | 
						|
 | 
						|
import gym
 | 
						|
import numpy as np
 | 
						|
import torch
 | 
						|
from torch.utils.tensorboard import SummaryWriter
 | 
						|
 | 
						|
from tianshou.data import Collector, VectorReplayBuffer
 | 
						|
from tianshou.env import DummyVectorEnv
 | 
						|
from tianshou.policy import DQNPolicy
 | 
						|
from tianshou.trainer import offpolicy_trainer
 | 
						|
from tianshou.utils import TensorboardLogger
 | 
						|
from tianshou.utils.net.common import Net
 | 
						|
 | 
						|
 | 
						|
def get_args():
 | 
						|
    parser = argparse.ArgumentParser()
 | 
						|
    parser.add_argument('--task', type=str, default='Acrobot-v1')
 | 
						|
    parser.add_argument('--seed', type=int, default=0)
 | 
						|
    parser.add_argument('--eps-test', type=float, default=0.05)
 | 
						|
    parser.add_argument('--eps-train', type=float, default=0.5)
 | 
						|
    parser.add_argument('--buffer-size', type=int, default=20000)
 | 
						|
    parser.add_argument('--lr', type=float, default=1e-3)
 | 
						|
    parser.add_argument('--gamma', type=float, default=0.95)
 | 
						|
    parser.add_argument('--n-step', type=int, default=3)
 | 
						|
    parser.add_argument('--target-update-freq', type=int, default=320)
 | 
						|
    parser.add_argument('--epoch', type=int, default=10)
 | 
						|
    parser.add_argument('--step-per-epoch', type=int, default=100000)
 | 
						|
    parser.add_argument('--step-per-collect', type=int, default=100)
 | 
						|
    parser.add_argument('--update-per-step', type=float, default=0.01)
 | 
						|
    parser.add_argument('--batch-size', type=int, default=64)
 | 
						|
    parser.add_argument('--hidden-sizes', type=int, nargs='*', default=[128])
 | 
						|
    parser.add_argument(
 | 
						|
        '--dueling-q-hidden-sizes', type=int, nargs='*', default=[128, 128]
 | 
						|
    )
 | 
						|
    parser.add_argument(
 | 
						|
        '--dueling-v-hidden-sizes', type=int, nargs='*', default=[128, 128]
 | 
						|
    )
 | 
						|
    parser.add_argument('--training-num', type=int, default=10)
 | 
						|
    parser.add_argument('--test-num', type=int, default=100)
 | 
						|
    parser.add_argument('--logdir', type=str, default='log')
 | 
						|
    parser.add_argument('--render', type=float, default=0.)
 | 
						|
    parser.add_argument(
 | 
						|
        '--device', type=str, default='cuda' if torch.cuda.is_available() else 'cpu'
 | 
						|
    )
 | 
						|
    return parser.parse_args()
 | 
						|
 | 
						|
 | 
						|
def test_dqn(args=get_args()):
 | 
						|
    env = gym.make(args.task)
 | 
						|
    args.state_shape = env.observation_space.shape or env.observation_space.n
 | 
						|
    args.action_shape = env.action_space.shape or env.action_space.n
 | 
						|
    # train_envs = gym.make(args.task)
 | 
						|
    # you can also use tianshou.env.SubprocVectorEnv
 | 
						|
    train_envs = DummyVectorEnv(
 | 
						|
        [lambda: gym.make(args.task) for _ in range(args.training_num)]
 | 
						|
    )
 | 
						|
    # test_envs = gym.make(args.task)
 | 
						|
    test_envs = DummyVectorEnv(
 | 
						|
        [lambda: gym.make(args.task) for _ in range(args.test_num)]
 | 
						|
    )
 | 
						|
    # seed
 | 
						|
    np.random.seed(args.seed)
 | 
						|
    torch.manual_seed(args.seed)
 | 
						|
    train_envs.seed(args.seed)
 | 
						|
    test_envs.seed(args.seed)
 | 
						|
    # model
 | 
						|
    Q_param = {"hidden_sizes": args.dueling_q_hidden_sizes}
 | 
						|
    V_param = {"hidden_sizes": args.dueling_v_hidden_sizes}
 | 
						|
    net = Net(
 | 
						|
        args.state_shape,
 | 
						|
        args.action_shape,
 | 
						|
        hidden_sizes=args.hidden_sizes,
 | 
						|
        device=args.device,
 | 
						|
        dueling_param=(Q_param, V_param)
 | 
						|
    ).to(args.device)
 | 
						|
    optim = torch.optim.Adam(net.parameters(), lr=args.lr)
 | 
						|
    policy = DQNPolicy(
 | 
						|
        net,
 | 
						|
        optim,
 | 
						|
        args.gamma,
 | 
						|
        args.n_step,
 | 
						|
        target_update_freq=args.target_update_freq
 | 
						|
    )
 | 
						|
    # collector
 | 
						|
    train_collector = Collector(
 | 
						|
        policy,
 | 
						|
        train_envs,
 | 
						|
        VectorReplayBuffer(args.buffer_size, len(train_envs)),
 | 
						|
        exploration_noise=True
 | 
						|
    )
 | 
						|
    test_collector = Collector(policy, test_envs, exploration_noise=True)
 | 
						|
    # policy.set_eps(1)
 | 
						|
    train_collector.collect(n_step=args.batch_size * args.training_num)
 | 
						|
    # log
 | 
						|
    log_path = os.path.join(args.logdir, args.task, 'dqn')
 | 
						|
    writer = SummaryWriter(log_path)
 | 
						|
    logger = TensorboardLogger(writer)
 | 
						|
 | 
						|
    def save_best_fn(policy):
 | 
						|
        torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))
 | 
						|
 | 
						|
    def stop_fn(mean_rewards):
 | 
						|
        return mean_rewards >= env.spec.reward_threshold
 | 
						|
 | 
						|
    def train_fn(epoch, env_step):
 | 
						|
        if env_step <= 100000:
 | 
						|
            policy.set_eps(args.eps_train)
 | 
						|
        elif env_step <= 500000:
 | 
						|
            eps = args.eps_train - (env_step - 100000) / \
 | 
						|
                400000 * (0.5 * args.eps_train)
 | 
						|
            policy.set_eps(eps)
 | 
						|
        else:
 | 
						|
            policy.set_eps(0.5 * args.eps_train)
 | 
						|
 | 
						|
    def test_fn(epoch, env_step):
 | 
						|
        policy.set_eps(args.eps_test)
 | 
						|
 | 
						|
    # trainer
 | 
						|
    result = offpolicy_trainer(
 | 
						|
        policy,
 | 
						|
        train_collector,
 | 
						|
        test_collector,
 | 
						|
        args.epoch,
 | 
						|
        args.step_per_epoch,
 | 
						|
        args.step_per_collect,
 | 
						|
        args.test_num,
 | 
						|
        args.batch_size,
 | 
						|
        update_per_step=args.update_per_step,
 | 
						|
        train_fn=train_fn,
 | 
						|
        test_fn=test_fn,
 | 
						|
        stop_fn=stop_fn,
 | 
						|
        save_best_fn=save_best_fn,
 | 
						|
        logger=logger
 | 
						|
    )
 | 
						|
 | 
						|
    assert stop_fn(result['best_reward'])
 | 
						|
    if __name__ == '__main__':
 | 
						|
        pprint.pprint(result)
 | 
						|
        # Let's watch its performance!
 | 
						|
        policy.eval()
 | 
						|
        policy.set_eps(args.eps_test)
 | 
						|
        test_envs.seed(args.seed)
 | 
						|
        test_collector.reset()
 | 
						|
        result = test_collector.collect(n_episode=args.test_num, render=args.render)
 | 
						|
        rews, lens = result["rews"], result["lens"]
 | 
						|
        print(f"Final reward: {rews.mean()}, length: {lens.mean()}")
 | 
						|
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    test_dqn(get_args())
 |