200 lines
		
	
	
		
			6.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			200 lines
		
	
	
		
			6.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import argparse
 | 
						|
import os
 | 
						|
import pprint
 | 
						|
 | 
						|
import gym
 | 
						|
import numpy as np
 | 
						|
import torch
 | 
						|
from torch.utils.tensorboard import SummaryWriter
 | 
						|
 | 
						|
from tianshou.data import Collector, VectorReplayBuffer
 | 
						|
from tianshou.env import SubprocVectorEnv
 | 
						|
from tianshou.policy import SACPolicy
 | 
						|
from tianshou.trainer import offpolicy_trainer
 | 
						|
from tianshou.utils import TensorboardLogger
 | 
						|
from tianshou.utils.net.common import Net
 | 
						|
from tianshou.utils.net.continuous import ActorProb, Critic
 | 
						|
 | 
						|
 | 
						|
def get_args():
 | 
						|
    parser = argparse.ArgumentParser()
 | 
						|
    parser.add_argument('--task', type=str, default="BipedalWalkerHardcore-v3")
 | 
						|
    parser.add_argument('--seed', type=int, default=0)
 | 
						|
    parser.add_argument('--buffer-size', type=int, default=1000000)
 | 
						|
    parser.add_argument('--actor-lr', type=float, default=3e-4)
 | 
						|
    parser.add_argument('--critic-lr', type=float, default=1e-3)
 | 
						|
    parser.add_argument('--gamma', type=float, default=0.99)
 | 
						|
    parser.add_argument('--tau', type=float, default=0.005)
 | 
						|
    parser.add_argument('--alpha', type=float, default=0.1)
 | 
						|
    parser.add_argument('--auto-alpha', type=int, default=1)
 | 
						|
    parser.add_argument('--alpha-lr', type=float, default=3e-4)
 | 
						|
    parser.add_argument('--epoch', type=int, default=100)
 | 
						|
    parser.add_argument('--step-per-epoch', type=int, default=100000)
 | 
						|
    parser.add_argument('--step-per-collect', type=int, default=10)
 | 
						|
    parser.add_argument('--update-per-step', type=float, default=0.1)
 | 
						|
    parser.add_argument('--batch-size', type=int, default=128)
 | 
						|
    parser.add_argument('--hidden-sizes', type=int, nargs='*', default=[128, 128])
 | 
						|
    parser.add_argument('--training-num', type=int, default=10)
 | 
						|
    parser.add_argument('--test-num', type=int, default=100)
 | 
						|
    parser.add_argument('--logdir', type=str, default='log')
 | 
						|
    parser.add_argument('--render', type=float, default=0.)
 | 
						|
    parser.add_argument('--n-step', type=int, default=4)
 | 
						|
    parser.add_argument(
 | 
						|
        '--device', type=str, default='cuda' if torch.cuda.is_available() else 'cpu'
 | 
						|
    )
 | 
						|
    parser.add_argument('--resume-path', type=str, default=None)
 | 
						|
    return parser.parse_args()
 | 
						|
 | 
						|
 | 
						|
class Wrapper(gym.Wrapper):
 | 
						|
    """Env wrapper for reward scale, action repeat and removing done penalty"""
 | 
						|
 | 
						|
    def __init__(self, env, action_repeat=3, reward_scale=5, rm_done=True):
 | 
						|
        super().__init__(env)
 | 
						|
        self.action_repeat = action_repeat
 | 
						|
        self.reward_scale = reward_scale
 | 
						|
        self.rm_done = rm_done
 | 
						|
 | 
						|
    def step(self, action):
 | 
						|
        rew_sum = 0.0
 | 
						|
        for _ in range(self.action_repeat):
 | 
						|
            obs, rew, done, info = self.env.step(action)
 | 
						|
            # remove done reward penalty
 | 
						|
            if not done or not self.rm_done:
 | 
						|
                rew_sum = rew_sum + rew
 | 
						|
            if done:
 | 
						|
                break
 | 
						|
        # scale reward
 | 
						|
        return obs, self.reward_scale * rew_sum, done, info
 | 
						|
 | 
						|
 | 
						|
def test_sac_bipedal(args=get_args()):
 | 
						|
    env = Wrapper(gym.make(args.task))
 | 
						|
 | 
						|
    args.state_shape = env.observation_space.shape or env.observation_space.n
 | 
						|
    args.action_shape = env.action_space.shape or env.action_space.n
 | 
						|
    args.max_action = env.action_space.high[0]
 | 
						|
 | 
						|
    train_envs = SubprocVectorEnv(
 | 
						|
        [lambda: Wrapper(gym.make(args.task)) for _ in range(args.training_num)]
 | 
						|
    )
 | 
						|
    # test_envs = gym.make(args.task)
 | 
						|
    test_envs = SubprocVectorEnv(
 | 
						|
        [
 | 
						|
            lambda: Wrapper(gym.make(args.task), reward_scale=1, rm_done=False)
 | 
						|
            for _ in range(args.test_num)
 | 
						|
        ]
 | 
						|
    )
 | 
						|
 | 
						|
    # seed
 | 
						|
    np.random.seed(args.seed)
 | 
						|
    torch.manual_seed(args.seed)
 | 
						|
    train_envs.seed(args.seed)
 | 
						|
    test_envs.seed(args.seed)
 | 
						|
 | 
						|
    # model
 | 
						|
    net_a = Net(args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device)
 | 
						|
    actor = ActorProb(
 | 
						|
        net_a,
 | 
						|
        args.action_shape,
 | 
						|
        max_action=args.max_action,
 | 
						|
        device=args.device,
 | 
						|
        unbounded=True
 | 
						|
    ).to(args.device)
 | 
						|
    actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
 | 
						|
 | 
						|
    net_c1 = Net(
 | 
						|
        args.state_shape,
 | 
						|
        args.action_shape,
 | 
						|
        hidden_sizes=args.hidden_sizes,
 | 
						|
        concat=True,
 | 
						|
        device=args.device
 | 
						|
    )
 | 
						|
    critic1 = Critic(net_c1, device=args.device).to(args.device)
 | 
						|
    critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr)
 | 
						|
 | 
						|
    net_c2 = Net(
 | 
						|
        args.state_shape,
 | 
						|
        args.action_shape,
 | 
						|
        hidden_sizes=args.hidden_sizes,
 | 
						|
        concat=True,
 | 
						|
        device=args.device
 | 
						|
    )
 | 
						|
    critic2 = Critic(net_c2, device=args.device).to(args.device)
 | 
						|
    critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr)
 | 
						|
 | 
						|
    if args.auto_alpha:
 | 
						|
        target_entropy = -np.prod(env.action_space.shape)
 | 
						|
        log_alpha = torch.zeros(1, requires_grad=True, device=args.device)
 | 
						|
        alpha_optim = torch.optim.Adam([log_alpha], lr=args.alpha_lr)
 | 
						|
        args.alpha = (target_entropy, log_alpha, alpha_optim)
 | 
						|
 | 
						|
    policy = SACPolicy(
 | 
						|
        actor,
 | 
						|
        actor_optim,
 | 
						|
        critic1,
 | 
						|
        critic1_optim,
 | 
						|
        critic2,
 | 
						|
        critic2_optim,
 | 
						|
        tau=args.tau,
 | 
						|
        gamma=args.gamma,
 | 
						|
        alpha=args.alpha,
 | 
						|
        estimation_step=args.n_step,
 | 
						|
        action_space=env.action_space
 | 
						|
    )
 | 
						|
    # load a previous policy
 | 
						|
    if args.resume_path:
 | 
						|
        policy.load_state_dict(torch.load(args.resume_path))
 | 
						|
        print("Loaded agent from: ", args.resume_path)
 | 
						|
 | 
						|
    # collector
 | 
						|
    train_collector = Collector(
 | 
						|
        policy,
 | 
						|
        train_envs,
 | 
						|
        VectorReplayBuffer(args.buffer_size, len(train_envs)),
 | 
						|
        exploration_noise=True
 | 
						|
    )
 | 
						|
    test_collector = Collector(policy, test_envs)
 | 
						|
    # train_collector.collect(n_step=args.buffer_size)
 | 
						|
    # log
 | 
						|
    log_path = os.path.join(args.logdir, args.task, 'sac')
 | 
						|
    writer = SummaryWriter(log_path)
 | 
						|
    logger = TensorboardLogger(writer)
 | 
						|
 | 
						|
    def save_best_fn(policy):
 | 
						|
        torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))
 | 
						|
 | 
						|
    def stop_fn(mean_rewards):
 | 
						|
        return mean_rewards >= env.spec.reward_threshold
 | 
						|
 | 
						|
    # trainer
 | 
						|
    result = offpolicy_trainer(
 | 
						|
        policy,
 | 
						|
        train_collector,
 | 
						|
        test_collector,
 | 
						|
        args.epoch,
 | 
						|
        args.step_per_epoch,
 | 
						|
        args.step_per_collect,
 | 
						|
        args.test_num,
 | 
						|
        args.batch_size,
 | 
						|
        update_per_step=args.update_per_step,
 | 
						|
        test_in_train=False,
 | 
						|
        stop_fn=stop_fn,
 | 
						|
        save_best_fn=save_best_fn,
 | 
						|
        logger=logger
 | 
						|
    )
 | 
						|
 | 
						|
    if __name__ == '__main__':
 | 
						|
        pprint.pprint(result)
 | 
						|
        # Let's watch its performance!
 | 
						|
        policy.eval()
 | 
						|
        test_envs.seed(args.seed)
 | 
						|
        test_collector.reset()
 | 
						|
        result = test_collector.collect(n_episode=args.test_num, render=args.render)
 | 
						|
        rews, lens = result["rews"], result["lens"]
 | 
						|
        print(f"Final reward: {rews.mean()}, length: {lens.mean()}")
 | 
						|
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    test_sac_bipedal()
 |