Tianshou/test/offline/test_td3_bc.py
Yi Su df35718992
Implement TD3+BC for offline RL (#660)
- implement TD3+BC for offline RL;
- fix a bug in trainer about test reward not logged because self.env_step is not set for offline setting;
2022-06-07 00:39:37 +08:00

216 lines
7.2 KiB
Python

import argparse
import datetime
import os
import pickle
import pprint
import gym
import numpy as np
import torch
from torch.utils.tensorboard import SummaryWriter
from tianshou.data import Collector, VectorReplayBuffer
from tianshou.env import DummyVectorEnv
from tianshou.exploration import GaussianNoise
from tianshou.policy import TD3BCPolicy
from tianshou.trainer import OfflineTrainer
from tianshou.utils import TensorboardLogger
from tianshou.utils.net.common import Net
from tianshou.utils.net.continuous import Actor, Critic
if __name__ == "__main__":
from gather_pendulum_data import expert_file_name, gather_data
else: # pytest
from test.offline.gather_pendulum_data import expert_file_name, gather_data
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--task', type=str, default='Pendulum-v1')
parser.add_argument('--reward-threshold', type=float, default=None)
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--hidden-sizes', type=int, nargs='*', default=[64, 64])
parser.add_argument('--actor-lr', type=float, default=1e-3)
parser.add_argument('--critic-lr', type=float, default=1e-3)
parser.add_argument('--epoch', type=int, default=5)
parser.add_argument('--step-per-epoch', type=int, default=500)
parser.add_argument('--n-step', type=int, default=3)
parser.add_argument('--batch-size', type=int, default=64)
parser.add_argument('--alpha', type=float, default=2.5)
parser.add_argument("--exploration-noise", type=float, default=0.1)
parser.add_argument("--policy-noise", type=float, default=0.2)
parser.add_argument("--noise-clip", type=float, default=0.5)
parser.add_argument("--update-actor-freq", type=int, default=2)
parser.add_argument("--tau", type=float, default=0.005)
parser.add_argument("--gamma", type=float, default=0.99)
parser.add_argument("--eval-freq", type=int, default=1)
parser.add_argument('--test-num', type=int, default=10)
parser.add_argument('--logdir', type=str, default='log')
parser.add_argument('--render', type=float, default=1 / 35)
parser.add_argument(
'--device', type=str, default='cuda' if torch.cuda.is_available() else 'cpu'
)
parser.add_argument('--resume-path', type=str, default=None)
parser.add_argument(
'--watch',
default=False,
action='store_true',
help='watch the play of pre-trained policy only',
)
parser.add_argument("--load-buffer-name", type=str, default=expert_file_name())
args = parser.parse_known_args()[0]
return args
def test_td3_bc(args=get_args()):
if os.path.exists(args.load_buffer_name) and os.path.isfile(args.load_buffer_name):
if args.load_buffer_name.endswith(".hdf5"):
buffer = VectorReplayBuffer.load_hdf5(args.load_buffer_name)
else:
buffer = pickle.load(open(args.load_buffer_name, "rb"))
else:
buffer = gather_data()
env = gym.make(args.task)
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
args.max_action = env.action_space.high[0] # float
if args.reward_threshold is None:
# too low?
default_reward_threshold = {"Pendulum-v0": -1200, "Pendulum-v1": -1200}
args.reward_threshold = default_reward_threshold.get(
args.task, env.spec.reward_threshold
)
args.state_dim = args.state_shape[0]
args.action_dim = args.action_shape[0]
# test_envs = gym.make(args.task)
test_envs = DummyVectorEnv(
[lambda: gym.make(args.task) for _ in range(args.test_num)]
)
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
test_envs.seed(args.seed)
# model
# actor network
net_a = Net(
args.state_shape,
hidden_sizes=args.hidden_sizes,
device=args.device,
)
actor = Actor(
net_a,
action_shape=args.action_shape,
max_action=args.max_action,
device=args.device,
).to(args.device)
actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
# critic network
net_c1 = Net(
args.state_shape,
args.action_shape,
hidden_sizes=args.hidden_sizes,
concat=True,
device=args.device,
)
net_c2 = Net(
args.state_shape,
args.action_shape,
hidden_sizes=args.hidden_sizes,
concat=True,
device=args.device,
)
critic1 = Critic(net_c1, device=args.device).to(args.device)
critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr)
critic2 = Critic(net_c2, device=args.device).to(args.device)
critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr)
policy = TD3BCPolicy(
actor,
actor_optim,
critic1,
critic1_optim,
critic2,
critic2_optim,
tau=args.tau,
gamma=args.gamma,
exploration_noise=GaussianNoise(sigma=args.exploration_noise),
policy_noise=args.policy_noise,
update_actor_freq=args.update_actor_freq,
noise_clip=args.noise_clip,
alpha=args.alpha,
estimation_step=args.n_step,
action_space=env.action_space,
)
# load a previous policy
if args.resume_path:
policy.load_state_dict(torch.load(args.resume_path, map_location=args.device))
print("Loaded agent from: ", args.resume_path)
# collector
# buffer has been gathered
# train_collector = Collector(policy, train_envs, buffer, exploration_noise=True)
test_collector = Collector(policy, test_envs)
# log
t0 = datetime.datetime.now().strftime("%m%d_%H%M%S")
log_file = f'seed_{args.seed}_{t0}-{args.task.replace("-", "_")}_td3_bc'
log_path = os.path.join(args.logdir, args.task, 'td3_bc', log_file)
writer = SummaryWriter(log_path)
writer.add_text("args", str(args))
logger = TensorboardLogger(writer)
def save_best_fn(policy):
torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))
def stop_fn(mean_rewards):
return mean_rewards >= args.reward_threshold
def watch():
policy.load_state_dict(
torch.load(
os.path.join(log_path, 'policy.pth'), map_location=torch.device('cpu')
)
)
policy.eval()
collector = Collector(policy, env)
collector.collect(n_episode=1, render=1 / 35)
# trainer
trainer = OfflineTrainer(
policy,
buffer,
test_collector,
args.epoch,
args.step_per_epoch,
args.test_num,
args.batch_size,
save_best_fn=save_best_fn,
stop_fn=stop_fn,
logger=logger,
)
for epoch, epoch_stat, info in trainer:
print(f"Epoch: {epoch}")
print(epoch_stat)
print(info)
assert stop_fn(info["best_reward"])
# Let's watch its performance!
if __name__ == "__main__":
pprint.pprint(info)
env = gym.make(args.task)
policy.eval()
collector = Collector(policy, env)
result = collector.collect(n_episode=1, render=args.render)
rews, lens = result["rews"], result["lens"]
print(f"Final reward: {rews.mean()}, length: {lens.mean()}")
if __name__ == '__main__':
test_td3_bc()