181 lines
6.7 KiB
Python
181 lines
6.7 KiB
Python
import numpy as np
|
|
import gc
|
|
|
|
|
|
# TODO: Refactor with tf.train.slice_input_producer, tf.train.Coordinator, tf.train.QueueRunner
|
|
class Batch(object):
|
|
"""
|
|
class for batch datasets. Collect multiple observations (actions, rewards, etc.) on-policy.
|
|
"""
|
|
|
|
def __init__(self, env, pi, advantage_estimation_function): # how to name the function?
|
|
self._env = env
|
|
self._pi = pi
|
|
self._advantage_estimation_function = advantage_estimation_function
|
|
self._is_first_collect = True
|
|
|
|
def collect(self, num_timesteps=0, num_episodes=0,
|
|
apply_function=True): # specify how many data to collect here, or fix it in __init__()
|
|
assert sum(
|
|
[num_timesteps > 0, num_episodes > 0]) == 1, "One and only one collection number specification permitted!"
|
|
|
|
if num_timesteps > 0: # YouQiaoben: finish this implementation, the following code are just from openai/baselines
|
|
t = 0
|
|
ac = self.env.action_space.sample() # not used, just so we have the datatype
|
|
new = True # marks if we're on first timestep of an episode
|
|
if self.is_first_collect:
|
|
ob = self.env.reset()
|
|
self.is_first_collect = False
|
|
else:
|
|
ob = self.raw_data['observations'][0] # last observation!
|
|
|
|
# Initialize history arrays
|
|
observations = np.array([ob for _ in range(num_timesteps)])
|
|
rewards = np.zeros(num_timesteps, 'float32')
|
|
episode_start_flags = np.zeros(num_timesteps, 'int32')
|
|
actions = np.array([ac for _ in range(num_timesteps)])
|
|
|
|
for t in range(num_timesteps):
|
|
pass
|
|
|
|
while True:
|
|
prevac = ac
|
|
ac, vpred = pi.act(stochastic, ob)
|
|
# Slight weirdness here because we need value function at time T
|
|
# before returning segment [0, T-1] so we get the correct
|
|
# terminal value
|
|
i = t % horizon
|
|
observations[i] = ob
|
|
vpreds[i] = vpred
|
|
episode_start_flags[i] = new
|
|
actions[i] = ac
|
|
prevacs[i] = prevac
|
|
|
|
ob, rew, new, _ = env.step(ac)
|
|
rewards[i] = rew
|
|
|
|
cur_ep_ret += rew
|
|
cur_ep_len += 1
|
|
if new:
|
|
ep_rets.append(cur_ep_ret)
|
|
ep_lens.append(cur_ep_len)
|
|
cur_ep_ret = 0
|
|
cur_ep_len = 0
|
|
ob = env.reset()
|
|
t += 1
|
|
|
|
if num_episodes > 0: # YouQiaoben: fix memory growth, both del and gc.collect() fail
|
|
# initialize rawdata lists
|
|
if not self._is_first_collect:
|
|
del self.observations
|
|
del self.actions
|
|
del self.rewards
|
|
del self.episode_start_flags
|
|
|
|
observations = []
|
|
actions = []
|
|
rewards = []
|
|
episode_start_flags = []
|
|
|
|
# t_count = 0
|
|
|
|
for _ in range(num_episodes):
|
|
t_count = 0
|
|
|
|
ob = self._env.reset()
|
|
observations.append(ob)
|
|
episode_start_flags.append(True)
|
|
|
|
while True:
|
|
ac = self._pi.act(ob)
|
|
actions.append(ac)
|
|
|
|
ob, reward, done, _ = self._env.step(ac)
|
|
rewards.append(reward)
|
|
|
|
t_count += 1
|
|
if t_count >= 100: # force episode stop, just to test if memory still grows
|
|
break
|
|
|
|
if done: # end of episode, discard s_T
|
|
break
|
|
else:
|
|
observations.append(ob)
|
|
episode_start_flags.append(False)
|
|
|
|
self.observations = np.array(observations)
|
|
self.actions = np.array(actions)
|
|
self.rewards = np.array(rewards)
|
|
self.episode_start_flags = np.array(episode_start_flags)
|
|
|
|
del observations
|
|
del actions
|
|
del rewards
|
|
del episode_start_flags
|
|
|
|
self.raw_data = {'observations': self.observations, 'actions': self.actions, 'rewards': self.rewards,
|
|
'episode_start_flags': self.episode_start_flags}
|
|
|
|
self._is_first_collect = False
|
|
|
|
if apply_function:
|
|
self.apply_advantage_estimation_function()
|
|
|
|
gc.collect()
|
|
|
|
def apply_advantage_estimation_function(self):
|
|
self.data = self._advantage_estimation_function(self.raw_data)
|
|
|
|
def next_batch(self, batch_size, standardize_advantage=True): # YouQiaoben: referencing other iterate over batches
|
|
rand_idx = np.random.choice(self.data['observations'].shape[0], batch_size)
|
|
current_batch = {key: value[rand_idx] for key, value in self.data.items()}
|
|
|
|
if standardize_advantage:
|
|
advantage_mean = np.mean(current_batch['returns'])
|
|
advantage_std = np.std(current_batch['returns'])
|
|
current_batch['returns'] = (current_batch['returns'] - advantage_mean) / advantage_std
|
|
|
|
return current_batch
|
|
|
|
# TODO: this will definitely be refactored with a proper logger
|
|
def statistics(self):
|
|
"""
|
|
compute the statistics of the current sampled paths
|
|
:return:
|
|
"""
|
|
rewards = self.raw_data['rewards']
|
|
episode_start_flags = self.raw_data['episode_start_flags']
|
|
num_timesteps = rewards.shape[0]
|
|
|
|
returns = []
|
|
episode_lengths = []
|
|
max_return = 0
|
|
num_episodes = 1
|
|
episode_start_idx = 0
|
|
for i in range(1, num_timesteps):
|
|
if episode_start_flags[i] or (
|
|
i == num_timesteps - 1): # found the start of next episode or the end of all episodes
|
|
if episode_start_flags[i]:
|
|
num_episodes += 1
|
|
if i < rewards.shape[0] - 1:
|
|
t = i - 1
|
|
else:
|
|
t = i
|
|
Gt = 0
|
|
episode_lengths.append(t - episode_start_idx)
|
|
while t >= episode_start_idx:
|
|
Gt += rewards[t]
|
|
t -= 1
|
|
|
|
returns.append(Gt)
|
|
if Gt > max_return:
|
|
max_return = Gt
|
|
episode_start_idx = i
|
|
|
|
print('AverageReturn: {}'.format(np.mean(returns)))
|
|
print('StdReturn : {}'.format(np.std(returns)))
|
|
print('NumEpisodes : {}'.format(num_episodes))
|
|
print('MinMaxReturns: {}..., {}'.format(np.sort(returns)[:3], np.sort(returns)[-3:]))
|
|
print('AverageLength: {}'.format(np.mean(episode_lengths)))
|
|
print('MinMaxLengths: {}..., {}'.format(np.sort(episode_lengths)[:3], np.sort(episode_lengths)[-3:]))
|