- simplify code - apply value normalization (global) and adv norm (per-batch) in on-policy algorithms
130 lines
5.6 KiB
Python
130 lines
5.6 KiB
Python
import torch
|
|
import numpy as np
|
|
from torch import nn
|
|
import torch.nn.functional as F
|
|
from typing import Any, Dict, List, Type, Optional
|
|
|
|
from tianshou.policy import PGPolicy
|
|
from tianshou.data import Batch, ReplayBuffer, to_torch_as, to_numpy
|
|
|
|
|
|
class A2CPolicy(PGPolicy):
|
|
"""Implementation of Synchronous Advantage Actor-Critic. arXiv:1602.01783.
|
|
|
|
:param torch.nn.Module actor: the actor network following the rules in
|
|
:class:`~tianshou.policy.BasePolicy`. (s -> logits)
|
|
:param torch.nn.Module critic: the critic network. (s -> V(s))
|
|
:param torch.optim.Optimizer optim: the optimizer for actor and critic
|
|
network.
|
|
:param dist_fn: distribution class for computing the action.
|
|
:type dist_fn: Type[torch.distributions.Distribution]
|
|
:param float discount_factor: in [0, 1]. Default to 0.99.
|
|
:param float vf_coef: weight for value loss. Default to 0.5.
|
|
:param float ent_coef: weight for entropy loss. Default to 0.01.
|
|
:param float max_grad_norm: clipping gradients in back propagation.
|
|
Default to None.
|
|
:param float gae_lambda: in [0, 1], param for Generalized Advantage
|
|
Estimation. Default to 0.95.
|
|
:param bool reward_normalization: normalize the reward to Normal(0, 1).
|
|
Default to False.
|
|
:param int max_batchsize: the maximum size of the batch when computing GAE,
|
|
depends on the size of available memory and the memory cost of the
|
|
model; should be as large as possible within the memory constraint.
|
|
Default to 256.
|
|
:param bool action_scaling: whether to map actions from range [-1, 1] to range
|
|
[action_spaces.low, action_spaces.high]. Default to True.
|
|
:param str action_bound_method: method to bound action to range [-1, 1], can be
|
|
either "clip" (for simply clipping the action), "tanh" (for applying tanh
|
|
squashing) for now, or empty string for no bounding. Default to "clip".
|
|
:param Optional[gym.Space] action_space: env's action space, mandatory if you want
|
|
to use option "action_scaling" or "action_bound_method". Default to None.
|
|
:param lr_scheduler: a learning rate scheduler that adjusts the learning rate in
|
|
optimizer in each policy.update(). Default to None (no lr_scheduler).
|
|
|
|
.. seealso::
|
|
|
|
Please refer to :class:`~tianshou.policy.BasePolicy` for more detailed
|
|
explanation.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
actor: torch.nn.Module,
|
|
critic: torch.nn.Module,
|
|
optim: torch.optim.Optimizer,
|
|
dist_fn: Type[torch.distributions.Distribution],
|
|
vf_coef: float = 0.5,
|
|
ent_coef: float = 0.01,
|
|
max_grad_norm: Optional[float] = None,
|
|
gae_lambda: float = 0.95,
|
|
max_batchsize: int = 256,
|
|
**kwargs: Any
|
|
) -> None:
|
|
super().__init__(actor, optim, dist_fn, **kwargs)
|
|
self.critic = critic
|
|
assert 0.0 <= gae_lambda <= 1.0, "GAE lambda should be in [0, 1]."
|
|
self._lambda = gae_lambda
|
|
self._weight_vf = vf_coef
|
|
self._weight_ent = ent_coef
|
|
self._grad_norm = max_grad_norm
|
|
self._batch = max_batchsize
|
|
|
|
def process_fn(
|
|
self, batch: Batch, buffer: ReplayBuffer, indice: np.ndarray
|
|
) -> Batch:
|
|
v_s_ = []
|
|
with torch.no_grad():
|
|
for b in batch.split(self._batch, shuffle=False, merge_last=True):
|
|
v_s_.append(to_numpy(self.critic(b.obs_next)))
|
|
v_s_ = np.concatenate(v_s_, axis=0)
|
|
if self._rew_norm: # unnormalize v_s_
|
|
v_s_ = v_s_ * np.sqrt(self.ret_rms.var + self._eps) + self.ret_rms.mean
|
|
unnormalized_returns, _ = self.compute_episodic_return(
|
|
batch, buffer, indice, v_s_=v_s_,
|
|
gamma=self._gamma, gae_lambda=self._lambda)
|
|
if self._rew_norm:
|
|
batch.returns = (unnormalized_returns - self.ret_rms.mean) / \
|
|
np.sqrt(self.ret_rms.var + self._eps)
|
|
self.ret_rms.update(unnormalized_returns)
|
|
else:
|
|
batch.returns = unnormalized_returns
|
|
return batch
|
|
|
|
def learn( # type: ignore
|
|
self, batch: Batch, batch_size: int, repeat: int, **kwargs: Any
|
|
) -> Dict[str, List[float]]:
|
|
losses, actor_losses, vf_losses, ent_losses = [], [], [], []
|
|
for _ in range(repeat):
|
|
for b in batch.split(batch_size, merge_last=True):
|
|
self.optim.zero_grad()
|
|
dist = self(b).dist
|
|
v = self.critic(b.obs).flatten()
|
|
a = to_torch_as(b.act, v)
|
|
r = to_torch_as(b.returns, v)
|
|
log_prob = dist.log_prob(a).reshape(len(r), -1).transpose(0, 1)
|
|
a_loss = -(log_prob * (r - v).detach()).mean()
|
|
vf_loss = F.mse_loss(r, v) # type: ignore
|
|
ent_loss = dist.entropy().mean()
|
|
loss = a_loss + self._weight_vf * vf_loss - self._weight_ent * ent_loss
|
|
loss.backward()
|
|
if self._grad_norm is not None:
|
|
nn.utils.clip_grad_norm_(
|
|
list(self.actor.parameters()) + list(self.critic.parameters()),
|
|
max_norm=self._grad_norm,
|
|
)
|
|
self.optim.step()
|
|
actor_losses.append(a_loss.item())
|
|
vf_losses.append(vf_loss.item())
|
|
ent_losses.append(ent_loss.item())
|
|
losses.append(loss.item())
|
|
# update learning rate if lr_scheduler is given
|
|
if self.lr_scheduler is not None:
|
|
self.lr_scheduler.step()
|
|
|
|
return {
|
|
"loss": losses,
|
|
"loss/actor": actor_losses,
|
|
"loss/vf": vf_losses,
|
|
"loss/ent": ent_losses,
|
|
}
|