Improves typing in examples and tests, towards mypy passing there. Introduces the SpaceInfo utility
		
			
				
	
	
		
			210 lines
		
	
	
		
			8.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			210 lines
		
	
	
		
			8.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import argparse
 | |
| import os
 | |
| import pprint
 | |
| 
 | |
| import gymnasium as gym
 | |
| import numpy as np
 | |
| import torch
 | |
| from torch.distributions import Distribution, Independent, Normal
 | |
| from torch.utils.tensorboard import SummaryWriter
 | |
| 
 | |
| from tianshou.data import Collector, VectorReplayBuffer
 | |
| from tianshou.env import DummyVectorEnv
 | |
| from tianshou.policy import PPOPolicy
 | |
| from tianshou.policy.base import BasePolicy
 | |
| from tianshou.policy.modelfree.ppo import PPOTrainingStats
 | |
| from tianshou.trainer import OnpolicyTrainer
 | |
| from tianshou.utils import TensorboardLogger
 | |
| from tianshou.utils.net.common import ActorCritic, Net
 | |
| from tianshou.utils.net.continuous import ActorProb, Critic
 | |
| from tianshou.utils.space_info import SpaceInfo
 | |
| 
 | |
| 
 | |
| def get_args() -> argparse.Namespace:
 | |
|     parser = argparse.ArgumentParser()
 | |
|     parser.add_argument("--task", type=str, default="Pendulum-v1")
 | |
|     parser.add_argument("--reward-threshold", type=float, default=None)
 | |
|     parser.add_argument("--seed", type=int, default=1)
 | |
|     parser.add_argument("--buffer-size", type=int, default=20000)
 | |
|     parser.add_argument("--lr", type=float, default=1e-3)
 | |
|     parser.add_argument("--gamma", type=float, default=0.95)
 | |
|     parser.add_argument("--epoch", type=int, default=5)
 | |
|     parser.add_argument("--step-per-epoch", type=int, default=150000)
 | |
|     parser.add_argument("--episode-per-collect", type=int, default=16)
 | |
|     parser.add_argument("--repeat-per-collect", type=int, default=2)
 | |
|     parser.add_argument("--batch-size", type=int, default=128)
 | |
|     parser.add_argument("--hidden-sizes", type=int, nargs="*", default=[64, 64])
 | |
|     parser.add_argument("--training-num", type=int, default=16)
 | |
|     parser.add_argument("--test-num", type=int, default=100)
 | |
|     parser.add_argument("--logdir", type=str, default="log")
 | |
|     parser.add_argument("--render", type=float, default=0.0)
 | |
|     parser.add_argument(
 | |
|         "--device",
 | |
|         type=str,
 | |
|         default="cuda" if torch.cuda.is_available() else "cpu",
 | |
|     )
 | |
|     # ppo special
 | |
|     parser.add_argument("--vf-coef", type=float, default=0.25)
 | |
|     parser.add_argument("--ent-coef", type=float, default=0.0)
 | |
|     parser.add_argument("--eps-clip", type=float, default=0.2)
 | |
|     parser.add_argument("--max-grad-norm", type=float, default=0.5)
 | |
|     parser.add_argument("--gae-lambda", type=float, default=0.95)
 | |
|     parser.add_argument("--rew-norm", type=int, default=1)
 | |
|     parser.add_argument("--dual-clip", type=float, default=None)
 | |
|     parser.add_argument("--value-clip", type=int, default=1)
 | |
|     parser.add_argument("--norm-adv", type=int, default=1)
 | |
|     parser.add_argument("--recompute-adv", type=int, default=0)
 | |
|     parser.add_argument("--resume", action="store_true")
 | |
|     parser.add_argument("--save-interval", type=int, default=4)
 | |
|     return parser.parse_known_args()[0]
 | |
| 
 | |
| 
 | |
| def test_ppo(args: argparse.Namespace = get_args()) -> None:
 | |
|     env = gym.make(args.task)
 | |
| 
 | |
|     space_info = SpaceInfo.from_env(env)
 | |
|     args.state_shape = space_info.observation_info.obs_shape
 | |
|     args.action_shape = space_info.action_info.action_shape
 | |
|     args.max_action = space_info.action_info.max_action
 | |
| 
 | |
|     if args.reward_threshold is None:
 | |
|         default_reward_threshold = {"Pendulum-v0": -250, "Pendulum-v1": -250}
 | |
|         args.reward_threshold = default_reward_threshold.get(
 | |
|             args.task,
 | |
|             env.spec.reward_threshold if env.spec else None,
 | |
|         )
 | |
|     # you can also use tianshou.env.SubprocVectorEnv
 | |
|     # train_envs = gym.make(args.task)
 | |
|     train_envs = DummyVectorEnv([lambda: gym.make(args.task) for _ in range(args.training_num)])
 | |
|     # test_envs = gym.make(args.task)
 | |
|     test_envs = DummyVectorEnv([lambda: gym.make(args.task) for _ in range(args.test_num)])
 | |
|     # seed
 | |
|     np.random.seed(args.seed)
 | |
|     torch.manual_seed(args.seed)
 | |
|     train_envs.seed(args.seed)
 | |
|     test_envs.seed(args.seed)
 | |
|     # model
 | |
|     net = Net(args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device)
 | |
|     actor = ActorProb(net, args.action_shape, unbounded=True, device=args.device).to(args.device)
 | |
|     critic = Critic(
 | |
|         Net(args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device),
 | |
|         device=args.device,
 | |
|     ).to(args.device)
 | |
|     actor_critic = ActorCritic(actor, critic)
 | |
|     # orthogonal initialization
 | |
|     for m in actor_critic.modules():
 | |
|         if isinstance(m, torch.nn.Linear):
 | |
|             torch.nn.init.orthogonal_(m.weight)
 | |
|             torch.nn.init.zeros_(m.bias)
 | |
|     optim = torch.optim.Adam(actor_critic.parameters(), lr=args.lr)
 | |
| 
 | |
|     # replace DiagGuassian with Independent(Normal) which is equivalent
 | |
|     # pass *logits to be consistent with policy.forward
 | |
|     def dist(*logits: torch.Tensor) -> Distribution:
 | |
|         return Independent(Normal(*logits), 1)
 | |
| 
 | |
|     policy: PPOPolicy[PPOTrainingStats] = PPOPolicy(
 | |
|         actor=actor,
 | |
|         critic=critic,
 | |
|         optim=optim,
 | |
|         dist_fn=dist,
 | |
|         discount_factor=args.gamma,
 | |
|         max_grad_norm=args.max_grad_norm,
 | |
|         eps_clip=args.eps_clip,
 | |
|         vf_coef=args.vf_coef,
 | |
|         ent_coef=args.ent_coef,
 | |
|         reward_normalization=args.rew_norm,
 | |
|         advantage_normalization=args.norm_adv,
 | |
|         recompute_advantage=args.recompute_adv,
 | |
|         dual_clip=args.dual_clip,
 | |
|         value_clip=args.value_clip,
 | |
|         gae_lambda=args.gae_lambda,
 | |
|         action_space=env.action_space,
 | |
|     )
 | |
|     # collector
 | |
|     train_collector = Collector(
 | |
|         policy,
 | |
|         train_envs,
 | |
|         VectorReplayBuffer(args.buffer_size, len(train_envs)),
 | |
|     )
 | |
|     test_collector = Collector(policy, test_envs)
 | |
|     # log
 | |
|     log_path = os.path.join(args.logdir, args.task, "ppo")
 | |
|     writer = SummaryWriter(log_path)
 | |
|     logger = TensorboardLogger(writer, save_interval=args.save_interval)
 | |
| 
 | |
|     def save_best_fn(policy: BasePolicy) -> None:
 | |
|         torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth"))
 | |
| 
 | |
|     def stop_fn(mean_rewards: float) -> bool:
 | |
|         return mean_rewards >= args.reward_threshold
 | |
| 
 | |
|     def save_checkpoint_fn(epoch: int, env_step: int, gradient_step: int) -> str:
 | |
|         # see also: https://pytorch.org/tutorials/beginner/saving_loading_models.html
 | |
|         ckpt_path = os.path.join(log_path, "checkpoint.pth")
 | |
|         # Example: saving by epoch num
 | |
|         # ckpt_path = os.path.join(log_path, f"checkpoint_{epoch}.pth")
 | |
|         torch.save(
 | |
|             {
 | |
|                 "model": policy.state_dict(),
 | |
|                 "optim": optim.state_dict(),
 | |
|             },
 | |
|             ckpt_path,
 | |
|         )
 | |
|         return ckpt_path
 | |
| 
 | |
|     if args.resume:
 | |
|         # load from existing checkpoint
 | |
|         print(f"Loading agent under {log_path}")
 | |
|         ckpt_path = os.path.join(log_path, "checkpoint.pth")
 | |
|         if os.path.exists(ckpt_path):
 | |
|             checkpoint = torch.load(ckpt_path, map_location=args.device)
 | |
|             policy.load_state_dict(checkpoint["model"])
 | |
|             optim.load_state_dict(checkpoint["optim"])
 | |
|             print("Successfully restore policy and optim.")
 | |
|         else:
 | |
|             print("Fail to restore policy and optim.")
 | |
| 
 | |
|     # trainer
 | |
|     trainer = OnpolicyTrainer(
 | |
|         policy=policy,
 | |
|         train_collector=train_collector,
 | |
|         test_collector=test_collector,
 | |
|         max_epoch=args.epoch,
 | |
|         step_per_epoch=args.step_per_epoch,
 | |
|         repeat_per_collect=args.repeat_per_collect,
 | |
|         episode_per_test=args.test_num,
 | |
|         batch_size=args.batch_size,
 | |
|         episode_per_collect=args.episode_per_collect,
 | |
|         stop_fn=stop_fn,
 | |
|         save_best_fn=save_best_fn,
 | |
|         logger=logger,
 | |
|         resume_from_log=args.resume,
 | |
|         save_checkpoint_fn=save_checkpoint_fn,
 | |
|     )
 | |
| 
 | |
|     for epoch_stat in trainer:
 | |
|         print(f"Epoch: {epoch_stat.epoch}")
 | |
|         print(epoch_stat)
 | |
|         # print(info)
 | |
| 
 | |
|     assert stop_fn(epoch_stat.info_stat.best_reward)
 | |
| 
 | |
|     if __name__ == "__main__":
 | |
|         pprint.pprint(epoch_stat)
 | |
|         # Let's watch its performance!
 | |
|         env = gym.make(args.task)
 | |
|         policy.eval()
 | |
|         collector = Collector(policy, env)
 | |
|         collector_stats = collector.collect(n_episode=1, render=args.render)
 | |
|         print(collector_stats)
 | |
| 
 | |
| 
 | |
| def test_ppo_resume(args: argparse.Namespace = get_args()) -> None:
 | |
|     args.resume = True
 | |
|     test_ppo(args)
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     test_ppo()
 |