Improves typing in examples and tests, towards mypy passing there. Introduces the SpaceInfo utility
		
			
				
	
	
		
			194 lines
		
	
	
		
			7.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			194 lines
		
	
	
		
			7.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import argparse
 | |
| import os
 | |
| import pprint
 | |
| from typing import cast
 | |
| 
 | |
| import gymnasium as gym
 | |
| import numpy as np
 | |
| import torch
 | |
| from torch.utils.tensorboard import SummaryWriter
 | |
| 
 | |
| from tianshou.data import (
 | |
|     Collector,
 | |
|     PrioritizedVectorReplayBuffer,
 | |
|     ReplayBuffer,
 | |
|     VectorReplayBuffer,
 | |
| )
 | |
| from tianshou.env import DummyVectorEnv
 | |
| from tianshou.policy import FQFPolicy
 | |
| from tianshou.policy.base import BasePolicy
 | |
| from tianshou.trainer import OffpolicyTrainer
 | |
| from tianshou.utils import TensorboardLogger
 | |
| from tianshou.utils.net.common import Net
 | |
| from tianshou.utils.net.discrete import FractionProposalNetwork, FullQuantileFunction
 | |
| from tianshou.utils.space_info import SpaceInfo
 | |
| 
 | |
| 
 | |
| def get_args() -> argparse.Namespace:
 | |
|     parser = argparse.ArgumentParser()
 | |
|     parser.add_argument("--task", type=str, default="CartPole-v0")
 | |
|     parser.add_argument("--reward-threshold", type=float, default=None)
 | |
|     parser.add_argument("--seed", type=int, default=1)
 | |
|     parser.add_argument("--eps-test", type=float, default=0.05)
 | |
|     parser.add_argument("--eps-train", type=float, default=0.1)
 | |
|     parser.add_argument("--buffer-size", type=int, default=20000)
 | |
|     parser.add_argument("--lr", type=float, default=3e-3)
 | |
|     parser.add_argument("--fraction-lr", type=float, default=2.5e-9)
 | |
|     parser.add_argument("--gamma", type=float, default=0.9)
 | |
|     parser.add_argument("--num-fractions", type=int, default=32)
 | |
|     parser.add_argument("--num-cosines", type=int, default=64)
 | |
|     parser.add_argument("--ent-coef", type=float, default=10.0)
 | |
|     parser.add_argument("--n-step", type=int, default=3)
 | |
|     parser.add_argument("--target-update-freq", type=int, default=320)
 | |
|     parser.add_argument("--epoch", type=int, default=10)
 | |
|     parser.add_argument("--step-per-epoch", type=int, default=10000)
 | |
|     parser.add_argument("--step-per-collect", type=int, default=10)
 | |
|     parser.add_argument("--update-per-step", type=float, default=0.1)
 | |
|     parser.add_argument("--batch-size", type=int, default=64)
 | |
|     parser.add_argument("--hidden-sizes", type=int, nargs="*", default=[64, 64, 64])
 | |
|     parser.add_argument("--training-num", type=int, default=10)
 | |
|     parser.add_argument("--test-num", type=int, default=100)
 | |
|     parser.add_argument("--logdir", type=str, default="log")
 | |
|     parser.add_argument("--render", type=float, default=0.0)
 | |
|     parser.add_argument("--prioritized-replay", action="store_true", default=False)
 | |
|     parser.add_argument("--alpha", type=float, default=0.6)
 | |
|     parser.add_argument("--beta", type=float, default=0.4)
 | |
|     parser.add_argument(
 | |
|         "--device",
 | |
|         type=str,
 | |
|         default="cuda" if torch.cuda.is_available() else "cpu",
 | |
|     )
 | |
|     return parser.parse_known_args()[0]
 | |
| 
 | |
| 
 | |
| def test_fqf(args: argparse.Namespace = get_args()) -> None:
 | |
|     env = gym.make(args.task)
 | |
|     space_info = SpaceInfo.from_env(env)
 | |
|     env.action_space = cast(gym.spaces.Discrete, env.action_space)
 | |
|     args.state_shape = space_info.observation_info.obs_shape
 | |
|     args.action_shape = space_info.action_info.action_shape
 | |
|     if args.reward_threshold is None:
 | |
|         default_reward_threshold = {"CartPole-v0": 195}
 | |
|         args.reward_threshold = default_reward_threshold.get(
 | |
|             args.task,
 | |
|             env.spec.reward_threshold if env.spec else None,
 | |
|         )
 | |
|     # train_envs = gym.make(args.task)
 | |
|     # you can also use tianshou.env.SubprocVectorEnv
 | |
|     train_envs = DummyVectorEnv([lambda: gym.make(args.task) for _ in range(args.training_num)])
 | |
|     # test_envs = gym.make(args.task)
 | |
|     test_envs = DummyVectorEnv([lambda: gym.make(args.task) for _ in range(args.test_num)])
 | |
|     # seed
 | |
|     np.random.seed(args.seed)
 | |
|     torch.manual_seed(args.seed)
 | |
|     train_envs.seed(args.seed)
 | |
|     test_envs.seed(args.seed)
 | |
|     # model
 | |
|     feature_net = Net(
 | |
|         args.state_shape,
 | |
|         args.hidden_sizes[-1],
 | |
|         hidden_sizes=args.hidden_sizes[:-1],
 | |
|         device=args.device,
 | |
|         softmax=False,
 | |
|     )
 | |
|     net = FullQuantileFunction(
 | |
|         feature_net,
 | |
|         args.action_shape,
 | |
|         args.hidden_sizes,
 | |
|         num_cosines=args.num_cosines,
 | |
|         device=args.device,
 | |
|     )
 | |
|     optim = torch.optim.Adam(net.parameters(), lr=args.lr)
 | |
|     fraction_net = FractionProposalNetwork(args.num_fractions, net.input_dim)
 | |
|     fraction_optim = torch.optim.RMSprop(fraction_net.parameters(), lr=args.fraction_lr)
 | |
|     policy: BasePolicy = FQFPolicy(
 | |
|         model=net,
 | |
|         optim=optim,
 | |
|         fraction_model=fraction_net,
 | |
|         fraction_optim=fraction_optim,
 | |
|         action_space=env.action_space,
 | |
|         discount_factor=args.gamma,
 | |
|         num_fractions=args.num_fractions,
 | |
|         ent_coef=args.ent_coef,
 | |
|         estimation_step=args.n_step,
 | |
|         target_update_freq=args.target_update_freq,
 | |
|     ).to(args.device)
 | |
|     # buffer
 | |
|     buf: ReplayBuffer
 | |
|     if args.prioritized_replay:
 | |
|         buf = PrioritizedVectorReplayBuffer(
 | |
|             args.buffer_size,
 | |
|             buffer_num=len(train_envs),
 | |
|             alpha=args.alpha,
 | |
|             beta=args.beta,
 | |
|         )
 | |
|     else:
 | |
|         buf = VectorReplayBuffer(args.buffer_size, buffer_num=len(train_envs))
 | |
|     # collector
 | |
|     train_collector = Collector(policy, train_envs, buf, exploration_noise=True)
 | |
|     test_collector = Collector(policy, test_envs, exploration_noise=True)
 | |
|     # policy.set_eps(1)
 | |
|     train_collector.collect(n_step=args.batch_size * args.training_num)
 | |
|     # log
 | |
|     log_path = os.path.join(args.logdir, args.task, "fqf")
 | |
|     writer = SummaryWriter(log_path)
 | |
|     logger = TensorboardLogger(writer)
 | |
| 
 | |
|     def save_best_fn(policy: BasePolicy) -> None:
 | |
|         torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth"))
 | |
| 
 | |
|     def stop_fn(mean_rewards: float) -> bool:
 | |
|         return mean_rewards >= args.reward_threshold
 | |
| 
 | |
|     def train_fn(epoch: int, env_step: int) -> None:
 | |
|         # eps annnealing, just a demo
 | |
|         if env_step <= 10000:
 | |
|             policy.set_eps(args.eps_train)
 | |
|         elif env_step <= 50000:
 | |
|             eps = args.eps_train - (env_step - 10000) / 40000 * (0.9 * args.eps_train)
 | |
|             policy.set_eps(eps)
 | |
|         else:
 | |
|             policy.set_eps(0.1 * args.eps_train)
 | |
| 
 | |
|     def test_fn(epoch: int, env_step: int | None) -> None:
 | |
|         policy.set_eps(args.eps_test)
 | |
| 
 | |
|     # trainer
 | |
|     result = OffpolicyTrainer(
 | |
|         policy=policy,
 | |
|         train_collector=train_collector,
 | |
|         test_collector=test_collector,
 | |
|         max_epoch=args.epoch,
 | |
|         step_per_epoch=args.step_per_epoch,
 | |
|         step_per_collect=args.step_per_collect,
 | |
|         episode_per_test=args.test_num,
 | |
|         batch_size=args.batch_size,
 | |
|         train_fn=train_fn,
 | |
|         test_fn=test_fn,
 | |
|         stop_fn=stop_fn,
 | |
|         save_best_fn=save_best_fn,
 | |
|         logger=logger,
 | |
|         update_per_step=args.update_per_step,
 | |
|     ).run()
 | |
|     assert stop_fn(result.best_reward)
 | |
| 
 | |
|     if __name__ == "__main__":
 | |
|         pprint.pprint(result)
 | |
|         # Let's watch its performance!
 | |
|         env = gym.make(args.task)
 | |
|         policy.eval()
 | |
|         policy.set_eps(args.eps_test)
 | |
|         collector = Collector(policy, env)
 | |
|         collector_stats = collector.collect(n_episode=1, render=args.render)
 | |
|         print(collector_stats)
 | |
| 
 | |
| 
 | |
| def test_pfqf(args: argparse.Namespace = get_args()) -> None:
 | |
|     args.prioritized_replay = True
 | |
|     args.gamma = 0.95
 | |
|     test_fqf(args)
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     test_fqf(get_args())
 |