ChenDRAG e605bdea94
MuJoCo Benchmark - DDPG, TD3, SAC (#305)
Releasing Tianshou's SOTA benchmark of 9 out of 13 environments from the MuJoCo Gym task suite.
2021-03-07 19:21:02 +08:00

129 lines
5.2 KiB
Python

import torch
import numpy as np
from copy import deepcopy
from typing import Any, Dict, Tuple, Optional
from tianshou.policy import DDPGPolicy
from tianshou.data import Batch, ReplayBuffer
from tianshou.exploration import BaseNoise, GaussianNoise
class TD3Policy(DDPGPolicy):
"""Implementation of TD3, arXiv:1802.09477.
:param torch.nn.Module actor: the actor network following the rules in
:class:`~tianshou.policy.BasePolicy`. (s -> logits)
:param torch.optim.Optimizer actor_optim: the optimizer for actor network.
:param torch.nn.Module critic1: the first critic network. (s, a -> Q(s, a))
:param torch.optim.Optimizer critic1_optim: the optimizer for the first
critic network.
:param torch.nn.Module critic2: the second critic network. (s, a -> Q(s, a))
:param torch.optim.Optimizer critic2_optim: the optimizer for the second
critic network.
:param action_range: the action range (minimum, maximum).
:type action_range: Tuple[float, float]
:param float tau: param for soft update of the target network. Default to 0.005.
:param float gamma: discount factor, in [0, 1]. Default to 0.99.
:param float exploration_noise: the exploration noise, add to the action.
Default to ``GaussianNoise(sigma=0.1)``
:param float policy_noise: the noise used in updating policy network.
Default to 0.2.
:param int update_actor_freq: the update frequency of actor network.
Default to 2.
:param float noise_clip: the clipping range used in updating policy network.
Default to 0.5.
:param bool reward_normalization: normalize the reward to Normal(0, 1).
Default to False.
.. seealso::
Please refer to :class:`~tianshou.policy.BasePolicy` for more detailed
explanation.
"""
def __init__(
self,
actor: torch.nn.Module,
actor_optim: torch.optim.Optimizer,
critic1: torch.nn.Module,
critic1_optim: torch.optim.Optimizer,
critic2: torch.nn.Module,
critic2_optim: torch.optim.Optimizer,
action_range: Tuple[float, float],
tau: float = 0.005,
gamma: float = 0.99,
exploration_noise: Optional[BaseNoise] = GaussianNoise(sigma=0.1),
policy_noise: float = 0.2,
update_actor_freq: int = 2,
noise_clip: float = 0.5,
reward_normalization: bool = False,
estimation_step: int = 1,
**kwargs: Any,
) -> None:
super().__init__(actor, actor_optim, None, None, action_range, tau, gamma,
exploration_noise, reward_normalization,
estimation_step, **kwargs)
self.critic1, self.critic1_old = critic1, deepcopy(critic1)
self.critic1_old.eval()
self.critic1_optim = critic1_optim
self.critic2, self.critic2_old = critic2, deepcopy(critic2)
self.critic2_old.eval()
self.critic2_optim = critic2_optim
self._policy_noise = policy_noise
self._freq = update_actor_freq
self._noise_clip = noise_clip
self._cnt = 0
self._last = 0
def train(self, mode: bool = True) -> "TD3Policy":
self.training = mode
self.actor.train(mode)
self.critic1.train(mode)
self.critic2.train(mode)
return self
def sync_weight(self) -> None:
for o, n in zip(self.actor_old.parameters(), self.actor.parameters()):
o.data.copy_(o.data * (1.0 - self._tau) + n.data * self._tau)
for o, n in zip(self.critic1_old.parameters(), self.critic1.parameters()):
o.data.copy_(o.data * (1.0 - self._tau) + n.data * self._tau)
for o, n in zip(self.critic2_old.parameters(), self.critic2.parameters()):
o.data.copy_(o.data * (1.0 - self._tau) + n.data * self._tau)
def _target_q(self, buffer: ReplayBuffer, indice: np.ndarray) -> torch.Tensor:
batch = buffer[indice] # batch.obs: s_{t+n}
a_ = self(batch, model="actor_old", input="obs_next").act
dev = a_.device
noise = torch.randn(size=a_.shape, device=dev) * self._policy_noise
if self._noise_clip > 0.0:
noise = noise.clamp(-self._noise_clip, self._noise_clip)
a_ += noise
a_ = a_.clamp(self._range[0], self._range[1])
target_q = torch.min(
self.critic1_old(batch.obs_next, a_),
self.critic2_old(batch.obs_next, a_))
return target_q
def learn(self, batch: Batch, **kwargs: Any) -> Dict[str, float]:
# critic 1&2
td1, critic1_loss = self._mse_optimizer(
batch, self.critic1, self.critic1_optim)
td2, critic2_loss = self._mse_optimizer(
batch, self.critic2, self.critic2_optim)
batch.weight = (td1 + td2) / 2.0 # prio-buffer
# actor
if self._cnt % self._freq == 0:
actor_loss = -self.critic1(batch.obs, self(batch, eps=0.0).act).mean()
self.actor_optim.zero_grad()
actor_loss.backward()
self._last = actor_loss.item()
self.actor_optim.step()
self.sync_weight()
self._cnt += 1
return {
"loss/actor": self._last,
"loss/critic1": critic1_loss.item(),
"loss/critic2": critic2_loss.item(),
}