* remove dummy net; delete two files * split code to have backbone and head * rename class * change torch.float to torch.float32 * use flatten(1) instead of view(batch, -1) * remove dummy net in docs * bugfix for rnn * fix cuda error * minor fix of docs * do not change the example code in dqn tutorial, since it is for demonstration Co-authored-by: Trinkle23897 <463003665@qq.com>
134 lines
4.6 KiB
Python
134 lines
4.6 KiB
Python
import torch
|
|
import numpy as np
|
|
from torch import nn
|
|
|
|
from tianshou.data import to_torch
|
|
|
|
|
|
class Actor(nn.Module):
|
|
"""For advanced usage (how to customize the network), please refer to
|
|
:ref:`build_the_network`.
|
|
"""
|
|
|
|
def __init__(self, preprocess_net, action_shape,
|
|
max_action, device='cpu'):
|
|
super().__init__()
|
|
self.preprocess = preprocess_net
|
|
self.last = nn.Linear(128, np.prod(action_shape))
|
|
self._max = max_action
|
|
|
|
def forward(self, s, state=None, info={}):
|
|
logits, h = self.preprocess(s, state)
|
|
logits = self._max * torch.tanh(self.last(logits))
|
|
return logits, h
|
|
|
|
|
|
class Critic(nn.Module):
|
|
"""For advanced usage (how to customize the network), please refer to
|
|
:ref:`build_the_network`.
|
|
"""
|
|
|
|
def __init__(self, preprocess_net, device='cpu'):
|
|
super().__init__()
|
|
self.device = device
|
|
self.preprocess = preprocess_net
|
|
self.last = nn.Linear(128, 1)
|
|
|
|
def forward(self, s, a=None, **kwargs):
|
|
s = to_torch(s, device=self.device, dtype=torch.float32)
|
|
s = s.flatten(1)
|
|
if a is not None:
|
|
a = to_torch(a, device=self.device, dtype=torch.float32)
|
|
a = a.flatten(1)
|
|
s = torch.cat([s, a], dim=1)
|
|
logits, h = self.preprocess(s)
|
|
logits = self.last(logits)
|
|
return logits
|
|
|
|
|
|
class ActorProb(nn.Module):
|
|
"""For advanced usage (how to customize the network), please refer to
|
|
:ref:`build_the_network`.
|
|
"""
|
|
|
|
def __init__(self, preprocess_net, action_shape,
|
|
max_action, device='cpu', unbounded=False):
|
|
super().__init__()
|
|
self.preprocess = preprocess_net
|
|
self.device = device
|
|
self.mu = nn.Linear(128, np.prod(action_shape))
|
|
self.sigma = nn.Parameter(torch.zeros(np.prod(action_shape), 1))
|
|
self._max = max_action
|
|
self._unbounded = unbounded
|
|
|
|
def forward(self, s, state=None, **kwargs):
|
|
logits, h = self.preprocess(s, state)
|
|
mu = self.mu(logits)
|
|
if not self._unbounded:
|
|
mu = self._max * torch.tanh(mu)
|
|
shape = [1] * len(mu.shape)
|
|
shape[1] = -1
|
|
sigma = (self.sigma.view(shape) + torch.zeros_like(mu)).exp()
|
|
return (mu, sigma), None
|
|
|
|
|
|
class RecurrentActorProb(nn.Module):
|
|
"""For advanced usage (how to customize the network), please refer to
|
|
:ref:`build_the_network`.
|
|
"""
|
|
|
|
def __init__(self, layer_num, state_shape, action_shape,
|
|
max_action, device='cpu'):
|
|
super().__init__()
|
|
self.device = device
|
|
self.nn = nn.LSTM(input_size=np.prod(state_shape), hidden_size=128,
|
|
num_layers=layer_num, batch_first=True)
|
|
self.mu = nn.Linear(128, np.prod(action_shape))
|
|
self.sigma = nn.Parameter(torch.zeros(np.prod(action_shape), 1))
|
|
|
|
def forward(self, s, **kwargs):
|
|
s = to_torch(s, device=self.device, dtype=torch.float32)
|
|
# s [bsz, len, dim] (training) or [bsz, dim] (evaluation)
|
|
# In short, the tensor's shape in training phase is longer than which
|
|
# in evaluation phase.
|
|
if len(s.shape) == 2:
|
|
s = s.unsqueeze(-2)
|
|
logits, _ = self.nn(s)
|
|
logits = logits[:, -1]
|
|
mu = self.mu(logits)
|
|
shape = [1] * len(mu.shape)
|
|
shape[1] = -1
|
|
sigma = (self.sigma.view(shape) + torch.zeros_like(mu)).exp()
|
|
return (mu, sigma), None
|
|
|
|
|
|
class RecurrentCritic(nn.Module):
|
|
"""For advanced usage (how to customize the network), please refer to
|
|
:ref:`build_the_network`.
|
|
"""
|
|
|
|
def __init__(self, layer_num, state_shape, action_shape=0, device='cpu'):
|
|
super().__init__()
|
|
self.state_shape = state_shape
|
|
self.action_shape = action_shape
|
|
self.device = device
|
|
self.nn = nn.LSTM(input_size=np.prod(state_shape), hidden_size=128,
|
|
num_layers=layer_num, batch_first=True)
|
|
self.fc2 = nn.Linear(128 + np.prod(action_shape), 1)
|
|
|
|
def forward(self, s, a=None):
|
|
s = to_torch(s, device=self.device, dtype=torch.float32)
|
|
# s [bsz, len, dim] (training) or [bsz, dim] (evaluation)
|
|
# In short, the tensor's shape in training phase is longer than which
|
|
# in evaluation phase.
|
|
assert len(s.shape) == 3
|
|
self.nn.flatten_parameters()
|
|
s, (h, c) = self.nn(s)
|
|
s = s[:, -1]
|
|
if a is not None:
|
|
if not isinstance(a, torch.Tensor):
|
|
a = torch.tensor(a, device=self.device, dtype=torch.float32)
|
|
s = torch.cat([s, a], dim=1)
|
|
s = self.fc2(s)
|
|
return s
|