Tianshou/test/modelbased/test_psrl.py
Markus Krimmel ea36dc5195
Changes to support Gym 0.26.0 (#748)
* Changes to support Gym 0.26.0

* Replace map by simpler list comprehension

* Use syntax that is compatible with python 3.7

* Format code

* Fix environment seeding in test environment, fix buffer_profile test

* Remove self.seed() from __init__

* Fix random number generation

* Fix throughput tests

* Fix tests

* Removed done field from Buffer, fixed throughput test, turned off wandb, fixed formatting, fixed type hints, allow preprocessing_fn with truncated and terminated arguments, updated docstrings

* fix lint

* fix

* fix import

* fix

* fix mypy

* pytest --ignore='test/3rd_party'

* Use correct step API in _SetAttrWrapper

* Format

* Fix mypy

* Format

* Fix pydocstyle.
2022-09-26 09:31:23 -07:00

135 lines
4.7 KiB
Python

import argparse
import os
import pprint
import numpy as np
import pytest
import torch
from torch.utils.tensorboard import SummaryWriter
from tianshou.data import Collector, VectorReplayBuffer
from tianshou.policy import PSRLPolicy
from tianshou.trainer import onpolicy_trainer
from tianshou.utils import LazyLogger, TensorboardLogger, WandbLogger
try:
import envpool
except ImportError:
envpool = None
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--task', type=str, default='NChain-v0')
parser.add_argument('--reward-threshold', type=float, default=None)
parser.add_argument('--seed', type=int, default=1)
parser.add_argument('--buffer-size', type=int, default=50000)
parser.add_argument('--epoch', type=int, default=5)
parser.add_argument('--step-per-epoch', type=int, default=1000)
parser.add_argument('--episode-per-collect', type=int, default=1)
parser.add_argument('--training-num', type=int, default=1)
parser.add_argument('--test-num', type=int, default=10)
parser.add_argument('--logdir', type=str, default='log')
parser.add_argument('--render', type=float, default=0.0)
parser.add_argument('--rew-mean-prior', type=float, default=0.0)
parser.add_argument('--rew-std-prior', type=float, default=1.0)
parser.add_argument('--gamma', type=float, default=0.99)
parser.add_argument('--eps', type=float, default=0.01)
parser.add_argument('--add-done-loop', action="store_true", default=False)
parser.add_argument(
'--logger',
type=str,
default="none", # TODO: Change to "wandb" once wandb supports Gym >=0.26.0
choices=["wandb", "tensorboard", "none"],
)
return parser.parse_known_args()[0]
@pytest.mark.skipif(envpool is None, reason="EnvPool doesn't support this platform")
def test_psrl(args=get_args()):
# if you want to use python vector env, please refer to other test scripts
train_envs = env = envpool.make_gym(
args.task, num_envs=args.training_num, seed=args.seed
)
test_envs = envpool.make_gym(args.task, num_envs=args.test_num, seed=args.seed)
if args.reward_threshold is None:
default_reward_threshold = {"NChain-v0": 3400}
args.reward_threshold = default_reward_threshold.get(
args.task, env.spec.reward_threshold
)
print("reward threshold:", args.reward_threshold)
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
# model
n_action = args.action_shape
n_state = args.state_shape
trans_count_prior = np.ones((n_state, n_action, n_state))
rew_mean_prior = np.full((n_state, n_action), args.rew_mean_prior)
rew_std_prior = np.full((n_state, n_action), args.rew_std_prior)
policy = PSRLPolicy(
trans_count_prior, rew_mean_prior, rew_std_prior, args.gamma, args.eps,
args.add_done_loop
)
# collector
train_collector = Collector(
policy,
train_envs,
VectorReplayBuffer(args.buffer_size, len(train_envs)),
exploration_noise=True
)
test_collector = Collector(policy, test_envs)
# Logger
if args.logger == "wandb":
logger = WandbLogger(
save_interval=1, project='psrl', name='wandb_test', config=args
)
if args.logger != "none":
log_path = os.path.join(args.logdir, args.task, 'psrl')
writer = SummaryWriter(log_path)
writer.add_text("args", str(args))
if args.logger == "tensorboard":
logger = TensorboardLogger(writer)
else:
logger.load(writer)
else:
logger = LazyLogger()
def stop_fn(mean_rewards):
return mean_rewards >= args.reward_threshold
train_collector.collect(n_step=args.buffer_size, random=True)
# trainer, test it without logger
result = onpolicy_trainer(
policy,
train_collector,
test_collector,
args.epoch,
args.step_per_epoch,
1,
args.test_num,
0,
episode_per_collect=args.episode_per_collect,
stop_fn=stop_fn,
logger=logger,
test_in_train=False,
)
if __name__ == '__main__':
pprint.pprint(result)
# Let's watch its performance!
policy.eval()
test_envs.seed(args.seed)
test_collector.reset()
result = test_collector.collect(n_episode=args.test_num, render=args.render)
rews, lens = result["rews"], result["lens"]
print(f"Final reward: {rews.mean()}, length: {lens.mean()}")
elif env.spec.reward_threshold:
assert result["best_reward"] >= env.spec.reward_threshold
if __name__ == '__main__':
test_psrl()