Preparation for #914 and #920 Changes formatting to ruff and black. Remove python 3.8 ## Additional Changes - Removed flake8 dependencies - Adjusted pre-commit. Now CI and Make use pre-commit, reducing the duplication of linting calls - Removed check-docstyle option (ruff is doing that) - Merged format and lint. In CI the format-lint step fails if any changes are done, so it fulfills the lint functionality. --------- Co-authored-by: Jiayi Weng <jiayi@openai.com>
		
			
				
	
	
		
			99 lines
		
	
	
		
			3.5 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			99 lines
		
	
	
		
			3.5 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
| #!/usr/bin/env python3
 | |
| 
 | |
| import argparse
 | |
| import re
 | |
| from collections import defaultdict
 | |
| 
 | |
| import numpy as np
 | |
| from tabulate import tabulate
 | |
| from tools import csv2numpy, find_all_files, group_files
 | |
| 
 | |
| 
 | |
| def numerical_analysis(root_dir, xlim, norm=False):
 | |
|     file_pattern = re.compile(r".*/test_reward_\d+seeds.csv$")
 | |
|     norm_group_pattern = re.compile(r"(/|^)\w+?\-v(\d|$)")
 | |
|     output_group_pattern = re.compile(r".*?(?=(/|^)\w+?\-v\d)")
 | |
|     csv_files = find_all_files(root_dir, file_pattern)
 | |
|     norm_group = group_files(csv_files, norm_group_pattern)
 | |
|     output_group = group_files(csv_files, output_group_pattern)
 | |
|     # calculate numerical outcome for each csv_file (y/std integration max_y, final_y)
 | |
|     results = defaultdict(list)
 | |
|     for f in csv_files:
 | |
|         result = csv2numpy(f)
 | |
|         if norm:
 | |
|             result = np.stack(
 | |
|                 [
 | |
|                     result["env_step"],
 | |
|                     result["reward"] - result["reward"][0],
 | |
|                     result["reward:shaded"],
 | |
|                 ],
 | |
|             )
 | |
|         else:
 | |
|             result = np.stack([result["env_step"], result["reward"], result["reward:shaded"]])
 | |
| 
 | |
|         if result[0, -1] < xlim:
 | |
|             continue
 | |
| 
 | |
|         final_rew = np.interp(xlim, result[0], result[1])
 | |
|         final_rew_std = np.interp(xlim, result[0], result[2])
 | |
|         result = result[:, result[0] <= xlim]
 | |
| 
 | |
|         if len(result) == 0:
 | |
|             continue
 | |
| 
 | |
|         if result[0, -1] < xlim:
 | |
|             last_line = np.array([xlim, final_rew, final_rew_std]).reshape(3, 1)
 | |
|             result = np.concatenate([result, last_line], axis=-1)
 | |
| 
 | |
|         max_id = np.argmax(result[1])
 | |
|         results["name"].append(f)
 | |
|         results["final_reward"].append(result[1, -1])
 | |
|         results["final_reward_std"].append(result[2, -1])
 | |
|         results["max_reward"].append(result[1, max_id])
 | |
|         results["max_std"].append(result[2, max_id])
 | |
|         results["reward_integration"].append(np.trapz(result[1], x=result[0]))
 | |
|         results["reward_std_integration"].append(np.trapz(result[2], x=result[0]))
 | |
| 
 | |
|     results = {k: np.array(v) for k, v in results.items()}
 | |
|     print(tabulate(results, headers="keys"))
 | |
| 
 | |
|     if norm:
 | |
|         # calculate normalized numerical outcome for each csv_file group
 | |
|         for _, fs in norm_group.items():
 | |
|             mask = np.isin(results["name"], fs)
 | |
|             for k, v in results.items():
 | |
|                 if k == "name":
 | |
|                     continue
 | |
|                 v[mask] = v[mask] / max(v[mask])
 | |
|         # Add all numerical results for each outcome group
 | |
|         group_results = defaultdict(list)
 | |
|         for g, fs in output_group.items():
 | |
|             group_results["name"].append(g)
 | |
|             mask = np.isin(results["name"], fs)
 | |
|             group_results["num"].append(sum(mask))
 | |
|             for k in results:
 | |
|                 if k == "name":
 | |
|                     continue
 | |
|                 group_results[k + ":norm"].append(results[k][mask].mean())
 | |
|         # print all outputs for each csv_file and each outcome group
 | |
|         print()
 | |
|         print(tabulate(group_results, headers="keys"))
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     parser = argparse.ArgumentParser()
 | |
|     parser.add_argument(
 | |
|         "--xlim",
 | |
|         type=int,
 | |
|         default=1000000,
 | |
|         help="x-axis limitation (default: 1000000)",
 | |
|     )
 | |
|     parser.add_argument("--root-dir", type=str)
 | |
|     parser.add_argument(
 | |
|         "--norm",
 | |
|         action="store_true",
 | |
|         help="Normalize all results according to environment.",
 | |
|     )
 | |
|     args = parser.parse_args()
 | |
|     numerical_analysis(args.root_dir, args.xlim, norm=args.norm)
 |