Improves typing in examples and tests, towards mypy passing there. Introduces the SpaceInfo utility
		
			
				
	
	
		
			226 lines
		
	
	
		
			8.0 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			226 lines
		
	
	
		
			8.0 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
| #!/usr/bin/env python3
 | |
| 
 | |
| import argparse
 | |
| import datetime
 | |
| import os
 | |
| import pprint
 | |
| 
 | |
| import numpy as np
 | |
| import torch
 | |
| from mujoco_env import make_mujoco_env
 | |
| from torch import nn
 | |
| from torch.distributions import Distribution, Independent, Normal
 | |
| from torch.optim.lr_scheduler import LambdaLR
 | |
| 
 | |
| from examples.common import logger_factory
 | |
| from tianshou.data import Collector, ReplayBuffer, VectorReplayBuffer
 | |
| from tianshou.policy import NPGPolicy
 | |
| from tianshou.policy.base import BasePolicy
 | |
| from tianshou.trainer import OnpolicyTrainer
 | |
| from tianshou.utils.net.common import Net
 | |
| from tianshou.utils.net.continuous import ActorProb, Critic
 | |
| 
 | |
| 
 | |
| def get_args() -> argparse.Namespace:
 | |
|     parser = argparse.ArgumentParser()
 | |
|     parser.add_argument("--task", type=str, default="Ant-v4")
 | |
|     parser.add_argument("--seed", type=int, default=0)
 | |
|     parser.add_argument("--buffer-size", type=int, default=4096)
 | |
|     parser.add_argument(
 | |
|         "--hidden-sizes",
 | |
|         type=int,
 | |
|         nargs="*",
 | |
|         default=[64, 64],
 | |
|     )  # baselines [32, 32]
 | |
|     parser.add_argument("--lr", type=float, default=1e-3)
 | |
|     parser.add_argument("--gamma", type=float, default=0.99)
 | |
|     parser.add_argument("--epoch", type=int, default=100)
 | |
|     parser.add_argument("--step-per-epoch", type=int, default=30000)
 | |
|     parser.add_argument("--step-per-collect", type=int, default=1024)
 | |
|     parser.add_argument("--repeat-per-collect", type=int, default=1)
 | |
|     # batch-size >> step-per-collect means calculating all data in one singe forward.
 | |
|     parser.add_argument("--batch-size", type=int, default=None)
 | |
|     parser.add_argument("--training-num", type=int, default=16)
 | |
|     parser.add_argument("--test-num", type=int, default=10)
 | |
|     # npg special
 | |
|     parser.add_argument("--rew-norm", type=int, default=True)
 | |
|     parser.add_argument("--gae-lambda", type=float, default=0.95)
 | |
|     parser.add_argument("--bound-action-method", type=str, default="clip")
 | |
|     parser.add_argument("--lr-decay", type=int, default=True)
 | |
|     parser.add_argument("--logdir", type=str, default="log")
 | |
|     parser.add_argument("--render", type=float, default=0.0)
 | |
|     parser.add_argument("--norm-adv", type=int, default=1)
 | |
|     parser.add_argument("--optim-critic-iters", type=int, default=20)
 | |
|     parser.add_argument("--actor-step-size", type=float, default=0.1)
 | |
|     parser.add_argument(
 | |
|         "--device",
 | |
|         type=str,
 | |
|         default="cuda" if torch.cuda.is_available() else "cpu",
 | |
|     )
 | |
|     parser.add_argument("--resume-path", type=str, default=None)
 | |
|     parser.add_argument("--resume-id", type=str, default=None)
 | |
|     parser.add_argument(
 | |
|         "--logger",
 | |
|         type=str,
 | |
|         default="tensorboard",
 | |
|         choices=["tensorboard", "wandb"],
 | |
|     )
 | |
|     parser.add_argument("--wandb-project", type=str, default="mujoco.benchmark")
 | |
|     parser.add_argument(
 | |
|         "--watch",
 | |
|         default=False,
 | |
|         action="store_true",
 | |
|         help="watch the play of pre-trained policy only",
 | |
|     )
 | |
|     return parser.parse_args()
 | |
| 
 | |
| 
 | |
| def test_npg(args: argparse.Namespace = get_args()) -> None:
 | |
|     env, train_envs, test_envs = make_mujoco_env(
 | |
|         args.task,
 | |
|         args.seed,
 | |
|         args.training_num,
 | |
|         args.test_num,
 | |
|         obs_norm=True,
 | |
|     )
 | |
|     args.state_shape = env.observation_space.shape or env.observation_space.n
 | |
|     args.action_shape = env.action_space.shape or env.action_space.n
 | |
|     args.max_action = env.action_space.high[0]
 | |
|     print("Observations shape:", args.state_shape)
 | |
|     print("Actions shape:", args.action_shape)
 | |
|     print("Action range:", np.min(env.action_space.low), np.max(env.action_space.high))
 | |
|     # seed
 | |
|     np.random.seed(args.seed)
 | |
|     torch.manual_seed(args.seed)
 | |
|     # model
 | |
|     net_a = Net(
 | |
|         args.state_shape,
 | |
|         hidden_sizes=args.hidden_sizes,
 | |
|         activation=nn.Tanh,
 | |
|         device=args.device,
 | |
|     )
 | |
|     actor = ActorProb(
 | |
|         net_a,
 | |
|         args.action_shape,
 | |
|         unbounded=True,
 | |
|         device=args.device,
 | |
|     ).to(args.device)
 | |
|     net_c = Net(
 | |
|         args.state_shape,
 | |
|         hidden_sizes=args.hidden_sizes,
 | |
|         activation=nn.Tanh,
 | |
|         device=args.device,
 | |
|     )
 | |
|     critic = Critic(net_c, device=args.device).to(args.device)
 | |
|     torch.nn.init.constant_(actor.sigma_param, -0.5)
 | |
|     for m in list(actor.modules()) + list(critic.modules()):
 | |
|         if isinstance(m, torch.nn.Linear):
 | |
|             # orthogonal initialization
 | |
|             torch.nn.init.orthogonal_(m.weight, gain=np.sqrt(2))
 | |
|             torch.nn.init.zeros_(m.bias)
 | |
|     # do last policy layer scaling, this will make initial actions have (close to)
 | |
|     # 0 mean and std, and will help boost performances,
 | |
|     # see https://arxiv.org/abs/2006.05990, Fig.24 for details
 | |
|     for m in actor.mu.modules():
 | |
|         if isinstance(m, torch.nn.Linear):
 | |
|             torch.nn.init.zeros_(m.bias)
 | |
|             m.weight.data.copy_(0.01 * m.weight.data)
 | |
| 
 | |
|     optim = torch.optim.Adam(critic.parameters(), lr=args.lr)
 | |
|     lr_scheduler = None
 | |
|     if args.lr_decay:
 | |
|         # decay learning rate to 0 linearly
 | |
|         max_update_num = np.ceil(args.step_per_epoch / args.step_per_collect) * args.epoch
 | |
| 
 | |
|         lr_scheduler = LambdaLR(optim, lr_lambda=lambda epoch: 1 - epoch / max_update_num)
 | |
| 
 | |
|     def dist(*logits: torch.Tensor) -> Distribution:
 | |
|         return Independent(Normal(*logits), 1)
 | |
| 
 | |
|     policy: NPGPolicy = NPGPolicy(
 | |
|         actor=actor,
 | |
|         critic=critic,
 | |
|         optim=optim,
 | |
|         dist_fn=dist,
 | |
|         discount_factor=args.gamma,
 | |
|         gae_lambda=args.gae_lambda,
 | |
|         reward_normalization=args.rew_norm,
 | |
|         action_scaling=True,
 | |
|         action_bound_method=args.bound_action_method,
 | |
|         lr_scheduler=lr_scheduler,
 | |
|         action_space=env.action_space,
 | |
|         advantage_normalization=args.norm_adv,
 | |
|         optim_critic_iters=args.optim_critic_iters,
 | |
|         actor_step_size=args.actor_step_size,
 | |
|     )
 | |
| 
 | |
|     # load a previous policy
 | |
|     if args.resume_path:
 | |
|         ckpt = torch.load(args.resume_path, map_location=args.device)
 | |
|         policy.load_state_dict(ckpt["model"])
 | |
|         train_envs.set_obs_rms(ckpt["obs_rms"])
 | |
|         test_envs.set_obs_rms(ckpt["obs_rms"])
 | |
|         print("Loaded agent from: ", args.resume_path)
 | |
| 
 | |
|     # collector
 | |
|     buffer: VectorReplayBuffer | ReplayBuffer
 | |
|     if args.training_num > 1:
 | |
|         buffer = VectorReplayBuffer(args.buffer_size, len(train_envs))
 | |
|     else:
 | |
|         buffer = ReplayBuffer(args.buffer_size)
 | |
|     train_collector = Collector(policy, train_envs, buffer, exploration_noise=True)
 | |
|     test_collector = Collector(policy, test_envs)
 | |
| 
 | |
|     # log
 | |
|     now = datetime.datetime.now().strftime("%y%m%d-%H%M%S")
 | |
|     args.algo_name = "npg"
 | |
|     log_name = os.path.join(args.task, args.algo_name, str(args.seed), now)
 | |
|     log_path = os.path.join(args.logdir, log_name)
 | |
| 
 | |
|     # logger
 | |
|     if args.logger == "wandb":
 | |
|         logger_factory.logger_type = "wandb"
 | |
|         logger_factory.wandb_project = args.wandb_project
 | |
|     else:
 | |
|         logger_factory.logger_type = "tensorboard"
 | |
| 
 | |
|     logger = logger_factory.create_logger(
 | |
|         log_dir=log_path,
 | |
|         experiment_name=log_name,
 | |
|         run_id=args.resume_id,
 | |
|         config_dict=vars(args),
 | |
|     )
 | |
| 
 | |
|     def save_best_fn(policy: BasePolicy) -> None:
 | |
|         state = {"model": policy.state_dict(), "obs_rms": train_envs.get_obs_rms()}
 | |
|         torch.save(state, os.path.join(log_path, "policy.pth"))
 | |
| 
 | |
|     if not args.watch:
 | |
|         # trainer
 | |
|         result = OnpolicyTrainer(
 | |
|             policy=policy,
 | |
|             train_collector=train_collector,
 | |
|             test_collector=test_collector,
 | |
|             max_epoch=args.epoch,
 | |
|             step_per_epoch=args.step_per_epoch,
 | |
|             repeat_per_collect=args.repeat_per_collect,
 | |
|             episode_per_test=args.test_num,
 | |
|             batch_size=args.batch_size,
 | |
|             step_per_collect=args.step_per_collect,
 | |
|             save_best_fn=save_best_fn,
 | |
|             logger=logger,
 | |
|             test_in_train=False,
 | |
|         ).run()
 | |
|         pprint.pprint(result)
 | |
| 
 | |
|     # Let's watch its performance!
 | |
|     policy.eval()
 | |
|     test_envs.seed(args.seed)
 | |
|     test_collector.reset()
 | |
|     collector_stats = test_collector.collect(n_episode=args.test_num, render=args.render)
 | |
|     print(collector_stats)
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     test_npg()
 |