Improves typing in examples and tests, towards mypy passing there. Introduces the SpaceInfo utility
		
			
				
	
	
		
			88 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			88 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| #!/usr/bin/env python3
 | |
| 
 | |
| import functools
 | |
| import os
 | |
| from collections.abc import Sequence
 | |
| from typing import Literal
 | |
| 
 | |
| from examples.mujoco.mujoco_env import MujocoEnvFactory
 | |
| from tianshou.highlevel.config import SamplingConfig
 | |
| from tianshou.highlevel.experiment import (
 | |
|     ExperimentConfig,
 | |
|     REDQExperimentBuilder,
 | |
| )
 | |
| from tianshou.highlevel.params.alpha import AutoAlphaFactoryDefault
 | |
| from tianshou.highlevel.params.policy_params import REDQParams
 | |
| from tianshou.utils import logging
 | |
| from tianshou.utils.logging import datetime_tag
 | |
| 
 | |
| 
 | |
| def main(
 | |
|     experiment_config: ExperimentConfig,
 | |
|     task: str = "Ant-v4",
 | |
|     buffer_size: int = 1000000,
 | |
|     hidden_sizes: Sequence[int] = (256, 256),
 | |
|     ensemble_size: int = 10,
 | |
|     subset_size: int = 2,
 | |
|     actor_lr: float = 1e-3,
 | |
|     critic_lr: float = 1e-3,
 | |
|     gamma: float = 0.99,
 | |
|     tau: float = 0.005,
 | |
|     alpha: float = 0.2,
 | |
|     auto_alpha: bool = False,
 | |
|     alpha_lr: float = 3e-4,
 | |
|     start_timesteps: int = 10000,
 | |
|     epoch: int = 200,
 | |
|     step_per_epoch: int = 5000,
 | |
|     step_per_collect: int = 1,
 | |
|     update_per_step: int = 20,
 | |
|     n_step: int = 1,
 | |
|     batch_size: int = 256,
 | |
|     target_mode: Literal["mean", "min"] = "min",
 | |
|     training_num: int = 1,
 | |
|     test_num: int = 10,
 | |
| ) -> None:
 | |
|     log_name = os.path.join(task, "redq", str(experiment_config.seed), datetime_tag())
 | |
| 
 | |
|     sampling_config = SamplingConfig(
 | |
|         num_epochs=epoch,
 | |
|         step_per_epoch=step_per_epoch,
 | |
|         batch_size=batch_size,
 | |
|         num_train_envs=training_num,
 | |
|         num_test_envs=test_num,
 | |
|         buffer_size=buffer_size,
 | |
|         step_per_collect=step_per_collect,
 | |
|         update_per_step=update_per_step,
 | |
|         repeat_per_collect=None,
 | |
|         start_timesteps=start_timesteps,
 | |
|         start_timesteps_random=True,
 | |
|     )
 | |
| 
 | |
|     env_factory = MujocoEnvFactory(task, experiment_config.seed, obs_norm=False)
 | |
| 
 | |
|     experiment = (
 | |
|         REDQExperimentBuilder(env_factory, experiment_config, sampling_config)
 | |
|         .with_redq_params(
 | |
|             REDQParams(
 | |
|                 actor_lr=actor_lr,
 | |
|                 critic_lr=critic_lr,
 | |
|                 gamma=gamma,
 | |
|                 tau=tau,
 | |
|                 alpha=AutoAlphaFactoryDefault(lr=alpha_lr) if auto_alpha else alpha,
 | |
|                 estimation_step=n_step,
 | |
|                 target_mode=target_mode,
 | |
|                 subset_size=subset_size,
 | |
|                 ensemble_size=ensemble_size,
 | |
|             ),
 | |
|         )
 | |
|         .with_actor_factory_default(hidden_sizes)
 | |
|         .with_critic_ensemble_factory_default(hidden_sizes)
 | |
|         .build()
 | |
|     )
 | |
|     experiment.run(log_name)
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     run_with_default_config = functools.partial(main, experiment_config=ExperimentConfig())
 | |
|     logging.run_cli(run_with_default_config)
 |