Improves typing in examples and tests, towards mypy passing there. Introduces the SpaceInfo utility
		
			
				
	
	
		
			180 lines
		
	
	
		
			6.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			180 lines
		
	
	
		
			6.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import argparse
 | |
| import os
 | |
| import pprint
 | |
| from typing import cast
 | |
| 
 | |
| import gymnasium as gym
 | |
| import numpy as np
 | |
| import torch
 | |
| import torch.nn as nn
 | |
| from torch.utils.tensorboard import SummaryWriter
 | |
| 
 | |
| from tianshou.data import Collector, VectorReplayBuffer
 | |
| from tianshou.env import DummyVectorEnv
 | |
| from tianshou.policy import REDQPolicy
 | |
| from tianshou.policy.base import BasePolicy
 | |
| from tianshou.trainer import OffpolicyTrainer
 | |
| from tianshou.utils import TensorboardLogger
 | |
| from tianshou.utils.net.common import EnsembleLinear, Net
 | |
| from tianshou.utils.net.continuous import ActorProb, Critic
 | |
| from tianshou.utils.space_info import SpaceInfo
 | |
| 
 | |
| 
 | |
| def get_args() -> argparse.Namespace:
 | |
|     parser = argparse.ArgumentParser()
 | |
|     parser.add_argument("--task", type=str, default="Pendulum-v1")
 | |
|     parser.add_argument("--reward-threshold", type=float, default=None)
 | |
|     parser.add_argument("--seed", type=int, default=0)
 | |
|     parser.add_argument("--buffer-size", type=int, default=20000)
 | |
|     parser.add_argument("--ensemble-size", type=int, default=4)
 | |
|     parser.add_argument("--subset-size", type=int, default=2)
 | |
|     parser.add_argument("--actor-lr", type=float, default=1e-4)
 | |
|     parser.add_argument("--critic-lr", type=float, default=1e-3)
 | |
|     parser.add_argument("--gamma", type=float, default=0.99)
 | |
|     parser.add_argument("--tau", type=float, default=0.005)
 | |
|     parser.add_argument("--alpha", type=float, default=0.2)
 | |
|     parser.add_argument("--auto-alpha", action="store_true", default=False)
 | |
|     parser.add_argument("--alpha-lr", type=float, default=3e-4)
 | |
|     parser.add_argument("--start-timesteps", type=int, default=1000)
 | |
|     parser.add_argument("--epoch", type=int, default=5)
 | |
|     parser.add_argument("--step-per-epoch", type=int, default=5000)
 | |
|     parser.add_argument("--step-per-collect", type=int, default=1)
 | |
|     parser.add_argument("--update-per-step", type=int, default=3)
 | |
|     parser.add_argument("--n-step", type=int, default=1)
 | |
|     parser.add_argument("--batch-size", type=int, default=64)
 | |
|     parser.add_argument("--target-mode", type=str, choices=("min", "mean"), default="min")
 | |
|     parser.add_argument("--hidden-sizes", type=int, nargs="*", default=[64, 64])
 | |
|     parser.add_argument("--training-num", type=int, default=8)
 | |
|     parser.add_argument("--test-num", type=int, default=100)
 | |
|     parser.add_argument("--logdir", type=str, default="log")
 | |
|     parser.add_argument("--render", type=float, default=0.0)
 | |
|     parser.add_argument(
 | |
|         "--device",
 | |
|         type=str,
 | |
|         default="cuda" if torch.cuda.is_available() else "cpu",
 | |
|     )
 | |
|     return parser.parse_known_args()[0]
 | |
| 
 | |
| 
 | |
| def test_redq(args: argparse.Namespace = get_args()) -> None:
 | |
|     env = gym.make(args.task)
 | |
|     env.action_space = cast(gym.spaces.Box, env.action_space)
 | |
|     space_info = SpaceInfo.from_env(env)
 | |
|     args.state_shape = space_info.observation_info.obs_shape
 | |
|     args.action_shape = space_info.action_info.action_shape
 | |
|     args.max_action = space_info.action_info.max_action
 | |
|     if args.reward_threshold is None:
 | |
|         default_reward_threshold = {"Pendulum-v0": -250, "Pendulum-v1": -250}
 | |
|         args.reward_threshold = default_reward_threshold.get(
 | |
|             args.task,
 | |
|             env.spec.reward_threshold if env.spec else None,
 | |
|         )
 | |
|     # you can also use tianshou.env.SubprocVectorEnv
 | |
|     # train_envs = gym.make(args.task)
 | |
|     train_envs = DummyVectorEnv([lambda: gym.make(args.task) for _ in range(args.training_num)])
 | |
|     # test_envs = gym.make(args.task)
 | |
|     test_envs = DummyVectorEnv([lambda: gym.make(args.task) for _ in range(args.test_num)])
 | |
|     # seed
 | |
|     np.random.seed(args.seed)
 | |
|     torch.manual_seed(args.seed)
 | |
|     train_envs.seed(args.seed)
 | |
|     test_envs.seed(args.seed)
 | |
|     # model
 | |
|     net = Net(args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device)
 | |
|     actor = ActorProb(
 | |
|         net,
 | |
|         args.action_shape,
 | |
|         device=args.device,
 | |
|         unbounded=True,
 | |
|         conditioned_sigma=True,
 | |
|     ).to(args.device)
 | |
|     actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
 | |
| 
 | |
|     def linear(x: int, y: int) -> nn.Module:
 | |
|         return EnsembleLinear(args.ensemble_size, x, y)
 | |
| 
 | |
|     net_c = Net(
 | |
|         args.state_shape,
 | |
|         args.action_shape,
 | |
|         hidden_sizes=args.hidden_sizes,
 | |
|         concat=True,
 | |
|         device=args.device,
 | |
|         linear_layer=linear,
 | |
|     )
 | |
|     critic = Critic(net_c, device=args.device, linear_layer=linear, flatten_input=False).to(
 | |
|         args.device,
 | |
|     )
 | |
|     critic_optim = torch.optim.Adam(critic.parameters(), lr=args.critic_lr)
 | |
| 
 | |
|     action_dim = space_info.action_info.action_dim
 | |
|     if args.auto_alpha:
 | |
|         target_entropy = -action_dim
 | |
|         log_alpha = torch.zeros(1, requires_grad=True, device=args.device)
 | |
|         alpha_optim = torch.optim.Adam([log_alpha], lr=args.alpha_lr)
 | |
|         args.alpha = (target_entropy, log_alpha, alpha_optim)
 | |
| 
 | |
|     policy: REDQPolicy = REDQPolicy(
 | |
|         actor=actor,
 | |
|         actor_optim=actor_optim,
 | |
|         critic=critic,
 | |
|         critic_optim=critic_optim,
 | |
|         ensemble_size=args.ensemble_size,
 | |
|         subset_size=args.subset_size,
 | |
|         tau=args.tau,
 | |
|         gamma=args.gamma,
 | |
|         alpha=args.alpha,
 | |
|         estimation_step=args.n_step,
 | |
|         actor_delay=args.update_per_step,
 | |
|         target_mode=args.target_mode,
 | |
|         action_space=env.action_space,
 | |
|     )
 | |
|     # collector
 | |
|     train_collector = Collector(
 | |
|         policy,
 | |
|         train_envs,
 | |
|         VectorReplayBuffer(args.buffer_size, len(train_envs)),
 | |
|         exploration_noise=True,
 | |
|     )
 | |
|     test_collector = Collector(policy, test_envs)
 | |
|     train_collector.collect(n_step=args.start_timesteps, random=True)
 | |
|     # log
 | |
|     log_path = os.path.join(args.logdir, args.task, "redq")
 | |
|     writer = SummaryWriter(log_path)
 | |
|     logger = TensorboardLogger(writer)
 | |
| 
 | |
|     def save_best_fn(policy: BasePolicy) -> None:
 | |
|         torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth"))
 | |
| 
 | |
|     def stop_fn(mean_rewards: float) -> bool:
 | |
|         return mean_rewards >= args.reward_threshold
 | |
| 
 | |
|     # trainer
 | |
|     result = OffpolicyTrainer(
 | |
|         policy=policy,
 | |
|         train_collector=train_collector,
 | |
|         test_collector=test_collector,
 | |
|         max_epoch=args.epoch,
 | |
|         step_per_epoch=args.step_per_epoch,
 | |
|         step_per_collect=args.step_per_collect,
 | |
|         episode_per_test=args.test_num,
 | |
|         batch_size=args.batch_size,
 | |
|         update_per_step=args.update_per_step,
 | |
|         stop_fn=stop_fn,
 | |
|         save_best_fn=save_best_fn,
 | |
|         logger=logger,
 | |
|     ).run()
 | |
|     assert stop_fn(result.best_reward)
 | |
| 
 | |
|     if __name__ == "__main__":
 | |
|         pprint.pprint(result)
 | |
|         # Let's watch its performance!
 | |
|         env = gym.make(args.task)
 | |
|         policy.eval()
 | |
|         collector = Collector(policy, env)
 | |
|         collector_stats = collector.collect(n_episode=1, render=args.render)
 | |
|         print(collector_stats)
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     test_redq()
 |