Improves typing in examples and tests, towards mypy passing there. Introduces the SpaceInfo utility
		
			
				
	
	
		
			171 lines
		
	
	
		
			6.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			171 lines
		
	
	
		
			6.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import argparse
 | |
| import os
 | |
| import pprint
 | |
| 
 | |
| import gymnasium as gym
 | |
| import numpy as np
 | |
| import torch
 | |
| from torch.utils.tensorboard import SummaryWriter
 | |
| 
 | |
| from tianshou.data import Collector, VectorReplayBuffer
 | |
| from tianshou.env import DummyVectorEnv
 | |
| from tianshou.exploration import GaussianNoise
 | |
| from tianshou.policy import TD3Policy
 | |
| from tianshou.policy.base import BasePolicy
 | |
| from tianshou.trainer import OffpolicyTrainer
 | |
| from tianshou.utils import TensorboardLogger
 | |
| from tianshou.utils.net.common import Net
 | |
| from tianshou.utils.net.continuous import Actor, Critic
 | |
| from tianshou.utils.space_info import SpaceInfo
 | |
| 
 | |
| 
 | |
| def get_args() -> argparse.Namespace:
 | |
|     parser = argparse.ArgumentParser()
 | |
|     parser.add_argument("--task", type=str, default="Pendulum-v1")
 | |
|     parser.add_argument("--reward-threshold", type=float, default=None)
 | |
|     parser.add_argument("--seed", type=int, default=1)
 | |
|     parser.add_argument("--buffer-size", type=int, default=20000)
 | |
|     parser.add_argument("--actor-lr", type=float, default=1e-4)
 | |
|     parser.add_argument("--critic-lr", type=float, default=1e-3)
 | |
|     parser.add_argument("--gamma", type=float, default=0.99)
 | |
|     parser.add_argument("--tau", type=float, default=0.005)
 | |
|     parser.add_argument("--exploration-noise", type=float, default=0.1)
 | |
|     parser.add_argument("--policy-noise", type=float, default=0.2)
 | |
|     parser.add_argument("--noise-clip", type=float, default=0.5)
 | |
|     parser.add_argument("--update-actor-freq", type=int, default=2)
 | |
|     parser.add_argument("--epoch", type=int, default=5)
 | |
|     parser.add_argument("--step-per-epoch", type=int, default=20000)
 | |
|     parser.add_argument("--step-per-collect", type=int, default=8)
 | |
|     parser.add_argument("--update-per-step", type=float, default=0.125)
 | |
|     parser.add_argument("--batch-size", type=int, default=128)
 | |
|     parser.add_argument("--hidden-sizes", type=int, nargs="*", default=[128, 128])
 | |
|     parser.add_argument("--training-num", type=int, default=8)
 | |
|     parser.add_argument("--test-num", type=int, default=100)
 | |
|     parser.add_argument("--logdir", type=str, default="log")
 | |
|     parser.add_argument("--render", type=float, default=0.0)
 | |
|     parser.add_argument("--n-step", type=int, default=3)
 | |
|     parser.add_argument(
 | |
|         "--device",
 | |
|         type=str,
 | |
|         default="cuda" if torch.cuda.is_available() else "cpu",
 | |
|     )
 | |
|     return parser.parse_known_args()[0]
 | |
| 
 | |
| 
 | |
| def test_td3(args: argparse.Namespace = get_args()) -> None:
 | |
|     env = gym.make(args.task)
 | |
|     space_info = SpaceInfo.from_env(env)
 | |
|     args.state_shape = space_info.observation_info.obs_shape
 | |
|     args.action_shape = space_info.action_info.action_shape
 | |
|     args.max_action = space_info.action_info.max_action
 | |
|     if args.reward_threshold is None:
 | |
|         default_reward_threshold = {"Pendulum-v0": -250, "Pendulum-v1": -250}
 | |
|         args.reward_threshold = default_reward_threshold.get(
 | |
|             args.task,
 | |
|             env.spec.reward_threshold if env.spec else None,
 | |
|         )
 | |
|     # you can also use tianshou.env.SubprocVectorEnv
 | |
|     # train_envs = gym.make(args.task)
 | |
|     train_envs = DummyVectorEnv([lambda: gym.make(args.task) for _ in range(args.training_num)])
 | |
|     # test_envs = gym.make(args.task)
 | |
|     test_envs = DummyVectorEnv([lambda: gym.make(args.task) for _ in range(args.test_num)])
 | |
|     # seed
 | |
|     np.random.seed(args.seed)
 | |
|     torch.manual_seed(args.seed)
 | |
|     train_envs.seed(args.seed)
 | |
|     test_envs.seed(args.seed)
 | |
|     # model
 | |
|     net = Net(args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device)
 | |
|     actor = Actor(net, args.action_shape, max_action=args.max_action, device=args.device).to(
 | |
|         args.device,
 | |
|     )
 | |
|     actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
 | |
|     net_c1 = Net(
 | |
|         args.state_shape,
 | |
|         args.action_shape,
 | |
|         hidden_sizes=args.hidden_sizes,
 | |
|         concat=True,
 | |
|         device=args.device,
 | |
|     )
 | |
|     critic1 = Critic(net_c1, device=args.device).to(args.device)
 | |
|     critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr)
 | |
|     net_c2 = Net(
 | |
|         args.state_shape,
 | |
|         args.action_shape,
 | |
|         hidden_sizes=args.hidden_sizes,
 | |
|         concat=True,
 | |
|         device=args.device,
 | |
|     )
 | |
|     critic2 = Critic(net_c2, device=args.device).to(args.device)
 | |
|     critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr)
 | |
|     policy: TD3Policy = TD3Policy(
 | |
|         actor=actor,
 | |
|         actor_optim=actor_optim,
 | |
|         critic=critic1,
 | |
|         critic_optim=critic1_optim,
 | |
|         critic2=critic2,
 | |
|         critic2_optim=critic2_optim,
 | |
|         tau=args.tau,
 | |
|         gamma=args.gamma,
 | |
|         exploration_noise=GaussianNoise(sigma=args.exploration_noise),
 | |
|         policy_noise=args.policy_noise,
 | |
|         update_actor_freq=args.update_actor_freq,
 | |
|         noise_clip=args.noise_clip,
 | |
|         estimation_step=args.n_step,
 | |
|         action_space=env.action_space,
 | |
|     )
 | |
|     # collector
 | |
|     train_collector = Collector(
 | |
|         policy,
 | |
|         train_envs,
 | |
|         VectorReplayBuffer(args.buffer_size, len(train_envs)),
 | |
|         exploration_noise=True,
 | |
|     )
 | |
|     test_collector = Collector(policy, test_envs)
 | |
|     # train_collector.collect(n_step=args.buffer_size)
 | |
|     # log
 | |
|     log_path = os.path.join(args.logdir, args.task, "td3")
 | |
|     writer = SummaryWriter(log_path)
 | |
|     logger = TensorboardLogger(writer)
 | |
| 
 | |
|     def save_best_fn(policy: BasePolicy) -> None:
 | |
|         torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth"))
 | |
| 
 | |
|     def stop_fn(mean_rewards: float) -> bool:
 | |
|         return mean_rewards >= args.reward_threshold
 | |
| 
 | |
|     # Iterator trainer
 | |
|     trainer = OffpolicyTrainer(
 | |
|         policy=policy,
 | |
|         train_collector=train_collector,
 | |
|         test_collector=test_collector,
 | |
|         max_epoch=args.epoch,
 | |
|         step_per_epoch=args.step_per_epoch,
 | |
|         step_per_collect=args.step_per_collect,
 | |
|         episode_per_test=args.test_num,
 | |
|         batch_size=args.batch_size,
 | |
|         update_per_step=args.update_per_step,
 | |
|         stop_fn=stop_fn,
 | |
|         save_best_fn=save_best_fn,
 | |
|         logger=logger,
 | |
|     )
 | |
|     for epoch_stat in trainer:
 | |
|         print(f"Epoch: {epoch_stat.epoch}")
 | |
|         pprint.pprint(epoch_stat)
 | |
|         # print(info)
 | |
| 
 | |
|     assert stop_fn(epoch_stat.info_stat.best_reward)
 | |
| 
 | |
|     if __name__ == "__main__":
 | |
|         pprint.pprint(epoch_stat.info_stat)
 | |
|         # Let's watch its performance!
 | |
|         env = gym.make(args.task)
 | |
|         policy.eval()
 | |
|         collector = Collector(policy, env)
 | |
|         collector_stats = collector.collect(n_episode=1, render=args.render)
 | |
|         print(collector_stats)
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     test_td3()
 |