2020-06-02 22:29:50 +08:00

142 lines
5.1 KiB
Python

import torch
import numpy as np
from torch import nn
from tianshou.data import to_torch
class Actor(nn.Module):
def __init__(self, layer_num, state_shape, action_shape,
max_action, device='cpu'):
super().__init__()
self.device = device
self.model = [
nn.Linear(np.prod(state_shape), 128),
nn.ReLU(inplace=True)]
for i in range(layer_num):
self.model += [nn.Linear(128, 128), nn.ReLU(inplace=True)]
self.model += [nn.Linear(128, np.prod(action_shape))]
self.model = nn.Sequential(*self.model)
self._max = max_action
def forward(self, s, **kwargs):
s = to_torch(s, device=self.device, dtype=torch.float)
batch = s.shape[0]
s = s.view(batch, -1)
logits = self.model(s)
logits = self._max * torch.tanh(logits)
return logits, None
class ActorProb(nn.Module):
def __init__(self, layer_num, state_shape, action_shape,
max_action, device='cpu'):
super().__init__()
self.device = device
self.model = [
nn.Linear(np.prod(state_shape), 128),
nn.ReLU(inplace=True)]
for i in range(layer_num):
self.model += [nn.Linear(128, 128), nn.ReLU(inplace=True)]
self.model = nn.Sequential(*self.model)
self.mu = nn.Linear(128, np.prod(action_shape))
self.sigma = nn.Parameter(torch.zeros(np.prod(action_shape), 1))
# self.sigma = nn.Linear(128, np.prod(action_shape))
self._max = max_action
def forward(self, s, **kwargs):
s = to_torch(s, device=self.device, dtype=torch.float)
batch = s.shape[0]
s = s.view(batch, -1)
logits = self.model(s)
mu = self.mu(logits)
shape = [1] * len(mu.shape)
shape[1] = -1
sigma = (self.sigma.view(shape) + torch.zeros_like(mu)).exp()
# assert sigma.shape == mu.shape
# mu = self._max * torch.tanh(self.mu(logits))
# sigma = torch.exp(self.sigma(logits))
return (mu, sigma), None
class Critic(nn.Module):
def __init__(self, layer_num, state_shape, action_shape=0, device='cpu'):
super().__init__()
self.device = device
self.model = [
nn.Linear(np.prod(state_shape) + np.prod(action_shape), 128),
nn.ReLU(inplace=True)]
for i in range(layer_num):
self.model += [nn.Linear(128, 128), nn.ReLU(inplace=True)]
self.model += [nn.Linear(128, 1)]
self.model = nn.Sequential(*self.model)
def forward(self, s, a=None, **kwargs):
s = to_torch(s, device=self.device, dtype=torch.float)
batch = s.shape[0]
s = s.view(batch, -1)
if a is not None:
if not isinstance(a, torch.Tensor):
a = torch.tensor(a, device=self.device, dtype=torch.float)
a = a.view(batch, -1)
s = torch.cat([s, a], dim=1)
logits = self.model(s)
return logits
class RecurrentActorProb(nn.Module):
def __init__(self, layer_num, state_shape, action_shape,
max_action, device='cpu'):
super().__init__()
self.device = device
self.nn = nn.LSTM(input_size=np.prod(state_shape), hidden_size=128,
num_layers=layer_num, batch_first=True)
self.mu = nn.Linear(128, np.prod(action_shape))
self.sigma = nn.Parameter(torch.zeros(np.prod(action_shape), 1))
def forward(self, s, **kwargs):
s = to_torch(s, device=self.device, dtype=torch.float)
# s [bsz, len, dim] (training) or [bsz, dim] (evaluation)
# In short, the tensor's shape in training phase is longer than which
# in evaluation phase.
if len(s.shape) == 2:
bsz, dim = s.shape
length = 1
else:
bsz, length, dim = s.shape
s = s.view(bsz, length, -1)
logits, _ = self.nn(s)
logits = logits[:, -1]
mu = self.mu(logits)
shape = [1] * len(mu.shape)
shape[1] = -1
sigma = (self.sigma.view(shape) + torch.zeros_like(mu)).exp()
return (mu, sigma), None
class RecurrentCritic(nn.Module):
def __init__(self, layer_num, state_shape, action_shape=0, device='cpu'):
super().__init__()
self.state_shape = state_shape
self.action_shape = action_shape
self.device = device
self.nn = nn.LSTM(input_size=np.prod(state_shape), hidden_size=128,
num_layers=layer_num, batch_first=True)
self.fc2 = nn.Linear(128 + np.prod(action_shape), 1)
def forward(self, s, a=None):
s = to_torch(s, device=self.device, dtype=torch.float)
# s [bsz, len, dim] (training) or [bsz, dim] (evaluation)
# In short, the tensor's shape in training phase is longer than which
# in evaluation phase.
assert len(s.shape) == 3
self.nn.flatten_parameters()
s, (h, c) = self.nn(s)
s = s[:, -1]
if a is not None:
if not isinstance(a, torch.Tensor):
a = torch.tensor(a, device=self.device, dtype=torch.float)
s = torch.cat([s, a], dim=1)
s = self.fc2(s)
return s