51 lines
1.5 KiB
Python
51 lines
1.5 KiB
Python
import torch
|
|
import numpy as np
|
|
from typing import Union, Optional
|
|
|
|
from tianshou.data import Batch
|
|
|
|
|
|
def to_numpy(x: Union[
|
|
torch.Tensor, dict, Batch, np.ndarray]) -> Union[
|
|
dict, Batch, np.ndarray]:
|
|
"""Return an object without torch.Tensor."""
|
|
if isinstance(x, torch.Tensor):
|
|
x = x.detach().cpu().numpy()
|
|
elif isinstance(x, dict):
|
|
for k, v in x.items():
|
|
x[k] = to_numpy(v)
|
|
elif isinstance(x, Batch):
|
|
x.to_numpy()
|
|
return x
|
|
|
|
|
|
def to_torch(x: Union[torch.Tensor, dict, Batch, np.ndarray],
|
|
dtype: Optional[torch.dtype] = None,
|
|
device: Union[str, int] = 'cpu'
|
|
) -> Union[dict, Batch, torch.Tensor]:
|
|
"""Return an object without np.ndarray."""
|
|
if isinstance(x, np.ndarray):
|
|
x = torch.from_numpy(x).to(device)
|
|
if dtype is not None:
|
|
x = x.type(dtype)
|
|
if isinstance(x, torch.Tensor):
|
|
if dtype is not None:
|
|
x = x.type(dtype)
|
|
x = x.to(device)
|
|
elif isinstance(x, dict):
|
|
for k, v in x.items():
|
|
x[k] = to_torch(v, dtype, device)
|
|
elif isinstance(x, Batch):
|
|
x.to_torch(dtype, device)
|
|
return x
|
|
|
|
|
|
def to_torch_as(x: Union[torch.Tensor, dict, Batch, np.ndarray],
|
|
y: torch.Tensor
|
|
) -> Union[dict, Batch, torch.Tensor]:
|
|
"""Return an object without np.ndarray. Same as
|
|
``to_torch(x, dtype=y.dtype, device=y.device)``.
|
|
"""
|
|
assert isinstance(y, torch.Tensor)
|
|
return to_torch(x, dtype=y.dtype, device=y.device)
|