* remove dummy net; delete two files * split code to have backbone and head * rename class * change torch.float to torch.float32 * use flatten(1) instead of view(batch, -1) * remove dummy net in docs * bugfix for rnn * fix cuda error * minor fix of docs * do not change the example code in dqn tutorial, since it is for demonstration Co-authored-by: Trinkle23897 <463003665@qq.com>
		
			
				
	
	
		
			126 lines
		
	
	
		
			5.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			126 lines
		
	
	
		
			5.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import os
 | 
						|
import gym
 | 
						|
import torch
 | 
						|
import pprint
 | 
						|
import argparse
 | 
						|
import numpy as np
 | 
						|
from torch.utils.tensorboard import SummaryWriter
 | 
						|
 | 
						|
from tianshou.env import VectorEnv
 | 
						|
from tianshou.policy import TD3Policy
 | 
						|
from tianshou.trainer import offpolicy_trainer
 | 
						|
from tianshou.data import Collector, ReplayBuffer
 | 
						|
from tianshou.exploration import GaussianNoise
 | 
						|
from tianshou.utils.net.common import Net
 | 
						|
from tianshou.utils.net.continuous import Actor, Critic
 | 
						|
 | 
						|
 | 
						|
def get_args():
 | 
						|
    parser = argparse.ArgumentParser()
 | 
						|
    parser.add_argument('--task', type=str, default='Pendulum-v0')
 | 
						|
    parser.add_argument('--seed', type=int, default=0)
 | 
						|
    parser.add_argument('--buffer-size', type=int, default=20000)
 | 
						|
    parser.add_argument('--actor-lr', type=float, default=3e-4)
 | 
						|
    parser.add_argument('--critic-lr', type=float, default=1e-3)
 | 
						|
    parser.add_argument('--gamma', type=float, default=0.99)
 | 
						|
    parser.add_argument('--tau', type=float, default=0.005)
 | 
						|
    parser.add_argument('--exploration-noise', type=float, default=0.1)
 | 
						|
    parser.add_argument('--policy-noise', type=float, default=0.2)
 | 
						|
    parser.add_argument('--noise-clip', type=float, default=0.5)
 | 
						|
    parser.add_argument('--update-actor-freq', type=int, default=2)
 | 
						|
    parser.add_argument('--epoch', type=int, default=20)
 | 
						|
    parser.add_argument('--step-per-epoch', type=int, default=2400)
 | 
						|
    parser.add_argument('--collect-per-step', type=int, default=10)
 | 
						|
    parser.add_argument('--batch-size', type=int, default=128)
 | 
						|
    parser.add_argument('--layer-num', type=int, default=1)
 | 
						|
    parser.add_argument('--training-num', type=int, default=8)
 | 
						|
    parser.add_argument('--test-num', type=int, default=100)
 | 
						|
    parser.add_argument('--logdir', type=str, default='log')
 | 
						|
    parser.add_argument('--render', type=float, default=0.)
 | 
						|
    parser.add_argument('--rew-norm', type=int, default=1)
 | 
						|
    parser.add_argument('--ignore-done', type=int, default=1)
 | 
						|
    parser.add_argument('--n-step', type=int, default=1)
 | 
						|
    parser.add_argument(
 | 
						|
        '--device', type=str,
 | 
						|
        default='cuda' if torch.cuda.is_available() else 'cpu')
 | 
						|
    args = parser.parse_known_args()[0]
 | 
						|
    return args
 | 
						|
 | 
						|
 | 
						|
def test_td3(args=get_args()):
 | 
						|
    torch.set_num_threads(1)  # we just need only one thread for NN
 | 
						|
    env = gym.make(args.task)
 | 
						|
    if args.task == 'Pendulum-v0':
 | 
						|
        env.spec.reward_threshold = -250
 | 
						|
    args.state_shape = env.observation_space.shape or env.observation_space.n
 | 
						|
    args.action_shape = env.action_space.shape or env.action_space.n
 | 
						|
    args.max_action = env.action_space.high[0]
 | 
						|
    # you can also use tianshou.env.SubprocVectorEnv
 | 
						|
    # train_envs = gym.make(args.task)
 | 
						|
    train_envs = VectorEnv(
 | 
						|
        [lambda: gym.make(args.task) for _ in range(args.training_num)])
 | 
						|
    # test_envs = gym.make(args.task)
 | 
						|
    test_envs = VectorEnv(
 | 
						|
        [lambda: gym.make(args.task) for _ in range(args.test_num)])
 | 
						|
    # seed
 | 
						|
    np.random.seed(args.seed)
 | 
						|
    torch.manual_seed(args.seed)
 | 
						|
    train_envs.seed(args.seed)
 | 
						|
    test_envs.seed(args.seed)
 | 
						|
    # model
 | 
						|
    net = Net(args.layer_num, args.state_shape, device=args.device)
 | 
						|
    actor = Actor(
 | 
						|
        net, args.action_shape,
 | 
						|
        args.max_action, args.device
 | 
						|
    ).to(args.device)
 | 
						|
    actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
 | 
						|
    net = Net(args.layer_num, args.state_shape,
 | 
						|
              args.action_shape, concat=True, device=args.device)
 | 
						|
    critic1 = Critic(net, args.device).to(args.device)
 | 
						|
    critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr)
 | 
						|
    critic2 = Critic(net, args.device).to(args.device)
 | 
						|
    critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr)
 | 
						|
    policy = TD3Policy(
 | 
						|
        actor, actor_optim, critic1, critic1_optim, critic2, critic2_optim,
 | 
						|
        args.tau, args.gamma, GaussianNoise(sigma=args.exploration_noise),
 | 
						|
        args.policy_noise, args.update_actor_freq, args.noise_clip,
 | 
						|
        [env.action_space.low[0], env.action_space.high[0]],
 | 
						|
        reward_normalization=args.rew_norm,
 | 
						|
        ignore_done=args.ignore_done,
 | 
						|
        estimation_step=args.n_step)
 | 
						|
    # collector
 | 
						|
    train_collector = Collector(
 | 
						|
        policy, train_envs, ReplayBuffer(args.buffer_size))
 | 
						|
    test_collector = Collector(policy, test_envs)
 | 
						|
    # train_collector.collect(n_step=args.buffer_size)
 | 
						|
    # log
 | 
						|
    log_path = os.path.join(args.logdir, args.task, 'td3')
 | 
						|
    writer = SummaryWriter(log_path)
 | 
						|
 | 
						|
    def save_fn(policy):
 | 
						|
        torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))
 | 
						|
 | 
						|
    def stop_fn(x):
 | 
						|
        return x >= env.spec.reward_threshold
 | 
						|
 | 
						|
    # trainer
 | 
						|
    result = offpolicy_trainer(
 | 
						|
        policy, train_collector, test_collector, args.epoch,
 | 
						|
        args.step_per_epoch, args.collect_per_step, args.test_num,
 | 
						|
        args.batch_size, stop_fn=stop_fn, save_fn=save_fn, writer=writer)
 | 
						|
    assert stop_fn(result['best_reward'])
 | 
						|
    train_collector.close()
 | 
						|
    test_collector.close()
 | 
						|
    if __name__ == '__main__':
 | 
						|
        pprint.pprint(result)
 | 
						|
        # Let's watch its performance!
 | 
						|
        env = gym.make(args.task)
 | 
						|
        collector = Collector(policy, env)
 | 
						|
        result = collector.collect(n_episode=1, render=args.render)
 | 
						|
        print(f'Final reward: {result["rew"]}, length: {result["len"]}')
 | 
						|
        collector.close()
 | 
						|
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    test_td3()
 |