Tianshou/examples/mujoco/mujoco_npg.py
Daniel Plop eb0215cf76
Refactoring/mypy issues test (#1017)
Improves typing in examples and tests, towards mypy passing there.

Introduces the SpaceInfo utility
2024-02-06 14:24:30 +01:00

226 lines
8.0 KiB
Python
Executable File

#!/usr/bin/env python3
import argparse
import datetime
import os
import pprint
import numpy as np
import torch
from mujoco_env import make_mujoco_env
from torch import nn
from torch.distributions import Distribution, Independent, Normal
from torch.optim.lr_scheduler import LambdaLR
from examples.common import logger_factory
from tianshou.data import Collector, ReplayBuffer, VectorReplayBuffer
from tianshou.policy import NPGPolicy
from tianshou.policy.base import BasePolicy
from tianshou.trainer import OnpolicyTrainer
from tianshou.utils.net.common import Net
from tianshou.utils.net.continuous import ActorProb, Critic
def get_args() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument("--task", type=str, default="Ant-v4")
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--buffer-size", type=int, default=4096)
parser.add_argument(
"--hidden-sizes",
type=int,
nargs="*",
default=[64, 64],
) # baselines [32, 32]
parser.add_argument("--lr", type=float, default=1e-3)
parser.add_argument("--gamma", type=float, default=0.99)
parser.add_argument("--epoch", type=int, default=100)
parser.add_argument("--step-per-epoch", type=int, default=30000)
parser.add_argument("--step-per-collect", type=int, default=1024)
parser.add_argument("--repeat-per-collect", type=int, default=1)
# batch-size >> step-per-collect means calculating all data in one singe forward.
parser.add_argument("--batch-size", type=int, default=None)
parser.add_argument("--training-num", type=int, default=16)
parser.add_argument("--test-num", type=int, default=10)
# npg special
parser.add_argument("--rew-norm", type=int, default=True)
parser.add_argument("--gae-lambda", type=float, default=0.95)
parser.add_argument("--bound-action-method", type=str, default="clip")
parser.add_argument("--lr-decay", type=int, default=True)
parser.add_argument("--logdir", type=str, default="log")
parser.add_argument("--render", type=float, default=0.0)
parser.add_argument("--norm-adv", type=int, default=1)
parser.add_argument("--optim-critic-iters", type=int, default=20)
parser.add_argument("--actor-step-size", type=float, default=0.1)
parser.add_argument(
"--device",
type=str,
default="cuda" if torch.cuda.is_available() else "cpu",
)
parser.add_argument("--resume-path", type=str, default=None)
parser.add_argument("--resume-id", type=str, default=None)
parser.add_argument(
"--logger",
type=str,
default="tensorboard",
choices=["tensorboard", "wandb"],
)
parser.add_argument("--wandb-project", type=str, default="mujoco.benchmark")
parser.add_argument(
"--watch",
default=False,
action="store_true",
help="watch the play of pre-trained policy only",
)
return parser.parse_args()
def test_npg(args: argparse.Namespace = get_args()) -> None:
env, train_envs, test_envs = make_mujoco_env(
args.task,
args.seed,
args.training_num,
args.test_num,
obs_norm=True,
)
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
args.max_action = env.action_space.high[0]
print("Observations shape:", args.state_shape)
print("Actions shape:", args.action_shape)
print("Action range:", np.min(env.action_space.low), np.max(env.action_space.high))
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
# model
net_a = Net(
args.state_shape,
hidden_sizes=args.hidden_sizes,
activation=nn.Tanh,
device=args.device,
)
actor = ActorProb(
net_a,
args.action_shape,
unbounded=True,
device=args.device,
).to(args.device)
net_c = Net(
args.state_shape,
hidden_sizes=args.hidden_sizes,
activation=nn.Tanh,
device=args.device,
)
critic = Critic(net_c, device=args.device).to(args.device)
torch.nn.init.constant_(actor.sigma_param, -0.5)
for m in list(actor.modules()) + list(critic.modules()):
if isinstance(m, torch.nn.Linear):
# orthogonal initialization
torch.nn.init.orthogonal_(m.weight, gain=np.sqrt(2))
torch.nn.init.zeros_(m.bias)
# do last policy layer scaling, this will make initial actions have (close to)
# 0 mean and std, and will help boost performances,
# see https://arxiv.org/abs/2006.05990, Fig.24 for details
for m in actor.mu.modules():
if isinstance(m, torch.nn.Linear):
torch.nn.init.zeros_(m.bias)
m.weight.data.copy_(0.01 * m.weight.data)
optim = torch.optim.Adam(critic.parameters(), lr=args.lr)
lr_scheduler = None
if args.lr_decay:
# decay learning rate to 0 linearly
max_update_num = np.ceil(args.step_per_epoch / args.step_per_collect) * args.epoch
lr_scheduler = LambdaLR(optim, lr_lambda=lambda epoch: 1 - epoch / max_update_num)
def dist(*logits: torch.Tensor) -> Distribution:
return Independent(Normal(*logits), 1)
policy: NPGPolicy = NPGPolicy(
actor=actor,
critic=critic,
optim=optim,
dist_fn=dist,
discount_factor=args.gamma,
gae_lambda=args.gae_lambda,
reward_normalization=args.rew_norm,
action_scaling=True,
action_bound_method=args.bound_action_method,
lr_scheduler=lr_scheduler,
action_space=env.action_space,
advantage_normalization=args.norm_adv,
optim_critic_iters=args.optim_critic_iters,
actor_step_size=args.actor_step_size,
)
# load a previous policy
if args.resume_path:
ckpt = torch.load(args.resume_path, map_location=args.device)
policy.load_state_dict(ckpt["model"])
train_envs.set_obs_rms(ckpt["obs_rms"])
test_envs.set_obs_rms(ckpt["obs_rms"])
print("Loaded agent from: ", args.resume_path)
# collector
buffer: VectorReplayBuffer | ReplayBuffer
if args.training_num > 1:
buffer = VectorReplayBuffer(args.buffer_size, len(train_envs))
else:
buffer = ReplayBuffer(args.buffer_size)
train_collector = Collector(policy, train_envs, buffer, exploration_noise=True)
test_collector = Collector(policy, test_envs)
# log
now = datetime.datetime.now().strftime("%y%m%d-%H%M%S")
args.algo_name = "npg"
log_name = os.path.join(args.task, args.algo_name, str(args.seed), now)
log_path = os.path.join(args.logdir, log_name)
# logger
if args.logger == "wandb":
logger_factory.logger_type = "wandb"
logger_factory.wandb_project = args.wandb_project
else:
logger_factory.logger_type = "tensorboard"
logger = logger_factory.create_logger(
log_dir=log_path,
experiment_name=log_name,
run_id=args.resume_id,
config_dict=vars(args),
)
def save_best_fn(policy: BasePolicy) -> None:
state = {"model": policy.state_dict(), "obs_rms": train_envs.get_obs_rms()}
torch.save(state, os.path.join(log_path, "policy.pth"))
if not args.watch:
# trainer
result = OnpolicyTrainer(
policy=policy,
train_collector=train_collector,
test_collector=test_collector,
max_epoch=args.epoch,
step_per_epoch=args.step_per_epoch,
repeat_per_collect=args.repeat_per_collect,
episode_per_test=args.test_num,
batch_size=args.batch_size,
step_per_collect=args.step_per_collect,
save_best_fn=save_best_fn,
logger=logger,
test_in_train=False,
).run()
pprint.pprint(result)
# Let's watch its performance!
policy.eval()
test_envs.seed(args.seed)
test_collector.reset()
collector_stats = test_collector.collect(n_episode=args.test_num, render=args.render)
print(collector_stats)
if __name__ == "__main__":
test_npg()