Tianshou/test/discrete/test_a2c_with_il.py
Daniel Plop eb0215cf76
Refactoring/mypy issues test (#1017)
Improves typing in examples and tests, towards mypy passing there.

Introduces the SpaceInfo utility
2024-02-06 14:24:30 +01:00

194 lines
7.2 KiB
Python

import argparse
import os
import pprint
import gymnasium as gym
import numpy as np
import pytest
import torch
from gymnasium.spaces import Box
from torch.utils.tensorboard import SummaryWriter
from tianshou.data import Collector, VectorReplayBuffer
from tianshou.policy import A2CPolicy, ImitationPolicy
from tianshou.policy.base import BasePolicy
from tianshou.trainer import OffpolicyTrainer, OnpolicyTrainer
from tianshou.utils import TensorboardLogger
from tianshou.utils.net.common import ActorCritic, Net
from tianshou.utils.net.discrete import Actor, Critic
try:
import envpool
except ImportError:
envpool = None
def get_args() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument("--task", type=str, default="CartPole-v0")
parser.add_argument("--reward-threshold", type=float, default=None)
parser.add_argument("--seed", type=int, default=1)
parser.add_argument("--buffer-size", type=int, default=20000)
parser.add_argument("--lr", type=float, default=1e-3)
parser.add_argument("--il-lr", type=float, default=1e-3)
parser.add_argument("--gamma", type=float, default=0.9)
parser.add_argument("--epoch", type=int, default=10)
parser.add_argument("--step-per-epoch", type=int, default=50000)
parser.add_argument("--il-step-per-epoch", type=int, default=1000)
parser.add_argument("--episode-per-collect", type=int, default=16)
parser.add_argument("--step-per-collect", type=int, default=16)
parser.add_argument("--update-per-step", type=float, default=1 / 16)
parser.add_argument("--repeat-per-collect", type=int, default=1)
parser.add_argument("--batch-size", type=int, default=64)
parser.add_argument("--hidden-sizes", type=int, nargs="*", default=[64, 64])
parser.add_argument("--imitation-hidden-sizes", type=int, nargs="*", default=[128])
parser.add_argument("--training-num", type=int, default=16)
parser.add_argument("--test-num", type=int, default=100)
parser.add_argument("--logdir", type=str, default="log")
parser.add_argument("--render", type=float, default=0.0)
parser.add_argument(
"--device",
type=str,
default="cuda" if torch.cuda.is_available() else "cpu",
)
# a2c special
parser.add_argument("--vf-coef", type=float, default=0.5)
parser.add_argument("--ent-coef", type=float, default=0.0)
parser.add_argument("--max-grad-norm", type=float, default=None)
parser.add_argument("--gae-lambda", type=float, default=1.0)
parser.add_argument("--rew-norm", action="store_true", default=False)
return parser.parse_known_args()[0]
@pytest.mark.skipif(envpool is None, reason="EnvPool doesn't support this platform")
def test_a2c_with_il(args: argparse.Namespace = get_args()) -> None:
# if you want to use python vector env, please refer to other test scripts
train_envs = env = envpool.make(
args.task,
env_type="gymnasium",
num_envs=args.training_num,
seed=args.seed,
)
test_envs = envpool.make(
args.task,
env_type="gymnasium",
num_envs=args.test_num,
seed=args.seed,
)
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
if args.reward_threshold is None:
default_reward_threshold = {"CartPole-v0": 195}
args.reward_threshold = default_reward_threshold.get(args.task, env.spec.reward_threshold)
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
# model
net = Net(args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device)
actor = Actor(net, args.action_shape, device=args.device).to(args.device)
critic = Critic(net, device=args.device).to(args.device)
optim = torch.optim.Adam(ActorCritic(actor, critic).parameters(), lr=args.lr)
dist = torch.distributions.Categorical
policy: A2CPolicy = A2CPolicy(
actor=actor,
critic=critic,
optim=optim,
dist_fn=dist,
action_scaling=isinstance(env.action_space, Box),
discount_factor=args.gamma,
gae_lambda=args.gae_lambda,
vf_coef=args.vf_coef,
ent_coef=args.ent_coef,
max_grad_norm=args.max_grad_norm,
reward_normalization=args.rew_norm,
action_space=env.action_space,
)
# collector
train_collector = Collector(
policy,
train_envs,
VectorReplayBuffer(args.buffer_size, len(train_envs)),
)
test_collector = Collector(policy, test_envs)
# log
log_path = os.path.join(args.logdir, args.task, "a2c")
writer = SummaryWriter(log_path)
logger = TensorboardLogger(writer)
def save_best_fn(policy: BasePolicy) -> None:
torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth"))
def stop_fn(mean_rewards: float) -> bool:
return mean_rewards >= args.reward_threshold
# trainer
result = OnpolicyTrainer(
policy=policy,
train_collector=train_collector,
test_collector=test_collector,
max_epoch=args.epoch,
step_per_epoch=args.step_per_epoch,
repeat_per_collect=args.repeat_per_collect,
episode_per_test=args.test_num,
batch_size=args.batch_size,
episode_per_collect=args.episode_per_collect,
stop_fn=stop_fn,
save_best_fn=save_best_fn,
logger=logger,
).run()
assert stop_fn(result.best_reward)
if __name__ == "__main__":
pprint.pprint(result)
# Let's watch its performance!
env = gym.make(args.task)
policy.eval()
collector = Collector(policy, env)
collector_stats = collector.collect(n_episode=1, render=args.render)
print(collector_stats)
policy.eval()
# here we define an imitation collector with a trivial policy
# if args.task == 'CartPole-v0':
# env.spec.reward_threshold = 190 # lower the goal
net = Net(args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device)
net = Actor(net, args.action_shape, device=args.device).to(args.device)
optim = torch.optim.Adam(net.parameters(), lr=args.il_lr)
il_policy: ImitationPolicy = ImitationPolicy(
actor=net,
optim=optim,
action_space=env.action_space,
)
il_test_collector = Collector(
il_policy,
envpool.make(args.task, env_type="gymnasium", num_envs=args.test_num, seed=args.seed),
)
train_collector.reset()
result = OffpolicyTrainer(
policy=il_policy,
train_collector=train_collector,
test_collector=il_test_collector,
max_epoch=args.epoch,
step_per_epoch=args.il_step_per_epoch,
step_per_collect=args.step_per_collect,
episode_per_test=args.test_num,
batch_size=args.batch_size,
stop_fn=stop_fn,
save_best_fn=save_best_fn,
logger=logger,
).run()
assert stop_fn(result.best_reward)
if __name__ == "__main__":
pprint.pprint(result)
# Let's watch its performance!
env = gym.make(args.task)
il_policy.eval()
collector = Collector(il_policy, env)
collector_stats = collector.collect(n_episode=1, render=args.render)
print(collector_stats)
if __name__ == "__main__":
test_a2c_with_il()