Tianshou/test/discrete/test_drqn.py
Daniel Plop eb0215cf76
Refactoring/mypy issues test (#1017)
Improves typing in examples and tests, towards mypy passing there.

Introduces the SpaceInfo utility
2024-02-06 14:24:30 +01:00

147 lines
5.5 KiB
Python

import argparse
import os
import pprint
from typing import cast
import gymnasium as gym
import numpy as np
import torch
from torch.utils.tensorboard import SummaryWriter
from tianshou.data import Collector, VectorReplayBuffer
from tianshou.env import DummyVectorEnv
from tianshou.policy import DQNPolicy
from tianshou.policy.base import BasePolicy
from tianshou.trainer import OffpolicyTrainer
from tianshou.utils import TensorboardLogger
from tianshou.utils.net.common import Recurrent
from tianshou.utils.space_info import SpaceInfo
def get_args() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument("--task", type=str, default="CartPole-v0")
parser.add_argument("--reward-threshold", type=float, default=None)
parser.add_argument("--seed", type=int, default=1)
parser.add_argument("--eps-test", type=float, default=0.05)
parser.add_argument("--eps-train", type=float, default=0.1)
parser.add_argument("--buffer-size", type=int, default=20000)
parser.add_argument("--stack-num", type=int, default=4)
parser.add_argument("--lr", type=float, default=1e-3)
parser.add_argument("--gamma", type=float, default=0.95)
parser.add_argument("--n-step", type=int, default=3)
parser.add_argument("--target-update-freq", type=int, default=320)
parser.add_argument("--epoch", type=int, default=5)
parser.add_argument("--step-per-epoch", type=int, default=20000)
parser.add_argument("--update-per-step", type=float, default=1 / 16)
parser.add_argument("--step-per-collect", type=int, default=16)
parser.add_argument("--batch-size", type=int, default=128)
parser.add_argument("--layer-num", type=int, default=2)
parser.add_argument("--training-num", type=int, default=16)
parser.add_argument("--test-num", type=int, default=100)
parser.add_argument("--logdir", type=str, default="log")
parser.add_argument("--render", type=float, default=0.0)
parser.add_argument(
"--device",
type=str,
default="cuda" if torch.cuda.is_available() else "cpu",
)
return parser.parse_known_args()[0]
def test_drqn(args: argparse.Namespace = get_args()) -> None:
env = gym.make(args.task)
env.action_space = cast(gym.spaces.Discrete, env.action_space)
space_info = SpaceInfo.from_env(env)
args.state_shape = space_info.observation_info.obs_shape
args.action_shape = space_info.action_info.action_shape
if args.reward_threshold is None:
default_reward_threshold = {"CartPole-v0": 195}
args.reward_threshold = default_reward_threshold.get(
args.task,
env.spec.reward_threshold if env.spec else None,
)
# train_envs = gym.make(args.task)
# you can also use tianshou.env.SubprocVectorEnv
train_envs = DummyVectorEnv([lambda: gym.make(args.task) for _ in range(args.training_num)])
# test_envs = gym.make(args.task)
test_envs = DummyVectorEnv([lambda: gym.make(args.task) for _ in range(args.test_num)])
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
train_envs.seed(args.seed)
test_envs.seed(args.seed)
# model
net = Recurrent(args.layer_num, args.state_shape, args.action_shape, args.device).to(
args.device,
)
optim = torch.optim.Adam(net.parameters(), lr=args.lr)
policy: DQNPolicy = DQNPolicy(
model=net,
optim=optim,
discount_factor=args.gamma,
estimation_step=args.n_step,
action_space=env.action_space,
target_update_freq=args.target_update_freq,
)
# collector
buffer = VectorReplayBuffer(
args.buffer_size,
buffer_num=len(train_envs),
stack_num=args.stack_num,
ignore_obs_next=True,
)
train_collector = Collector(policy, train_envs, buffer, exploration_noise=True)
# the stack_num is for RNN training: sample framestack obs
test_collector = Collector(policy, test_envs, exploration_noise=True)
# policy.set_eps(1)
train_collector.collect(n_step=args.batch_size * args.training_num)
# log
log_path = os.path.join(args.logdir, args.task, "drqn")
writer = SummaryWriter(log_path)
logger = TensorboardLogger(writer)
def save_best_fn(policy: BasePolicy) -> None:
torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth"))
def stop_fn(mean_rewards: float) -> bool:
return mean_rewards >= args.reward_threshold
def train_fn(epoch: int, env_step: int) -> None:
policy.set_eps(args.eps_train)
def test_fn(epoch: int, env_step: int | None) -> None:
policy.set_eps(args.eps_test)
# trainer
result = OffpolicyTrainer(
policy=policy,
train_collector=train_collector,
test_collector=test_collector,
max_epoch=args.epoch,
step_per_epoch=args.step_per_epoch,
step_per_collect=args.step_per_collect,
episode_per_test=args.test_num,
batch_size=args.batch_size,
update_per_step=args.update_per_step,
train_fn=train_fn,
test_fn=test_fn,
stop_fn=stop_fn,
save_best_fn=save_best_fn,
logger=logger,
).run()
assert stop_fn(result.best_reward)
if __name__ == "__main__":
pprint.pprint(result)
# Let's watch its performance!
env = gym.make(args.task)
policy.eval()
collector = Collector(policy, env)
collector_stats = collector.collect(n_episode=1, render=args.render)
print(collector_stats)
if __name__ == "__main__":
test_drqn(get_args())