Michael Panchenko 2cc34fb72b
Poetry install, remove gym, bump python (#925)
Closes #914 

Additional changes:

- Deprecate python below 11
- Remove 3rd party and throughput tests. This simplifies install and
test pipeline
- Remove gym compatibility and shimmy
- Format with 3.11 conventions. In particular, add `zip(...,
strict=True/False)` where possible

Since the additional tests and gym were complicating the CI pipeline
(flaky and dist-dependent), it didn't make sense to work on fixing the
current tests in this PR to then just delete them in the next one. So
this PR changes the build and removes these tests at the same time.
2023-09-05 14:34:23 -07:00

105 lines
3.4 KiB
Python

from abc import ABC, abstractmethod
from collections.abc import Callable
from typing import Any
import gymnasium as gym
import numpy as np
from tianshou.env.utils import gym_new_venv_step_type
from tianshou.utils import deprecation
class EnvWorker(ABC):
"""An abstract worker for an environment."""
def __init__(self, env_fn: Callable[[], gym.Env]) -> None:
self._env_fn = env_fn
self.is_closed = False
self.result: gym_new_venv_step_type | tuple[np.ndarray, dict]
self.action_space = self.get_env_attr("action_space")
self.is_reset = False
@abstractmethod
def get_env_attr(self, key: str) -> Any:
pass
@abstractmethod
def set_env_attr(self, key: str, value: Any) -> None:
pass
def send(self, action: np.ndarray | None) -> None:
"""Send action signal to low-level worker.
When action is None, it indicates sending "reset" signal; otherwise
it indicates "step" signal. The paired return value from "recv"
function is determined by such kind of different signal.
"""
if hasattr(self, "send_action"):
deprecation(
"send_action will soon be deprecated. "
"Please use send and recv for your own EnvWorker.",
)
if action is None:
self.is_reset = True
self.result = self.reset()
else:
self.is_reset = False
self.send_action(action)
def recv(self) -> gym_new_venv_step_type | tuple[np.ndarray, dict]:
"""Receive result from low-level worker.
If the last "send" function sends a NULL action, it only returns a
single observation; otherwise it returns a tuple of (obs, rew, done,
info) or (obs, rew, terminated, truncated, info), based on whether
the environment is using the old step API or the new one.
"""
if hasattr(self, "get_result"):
deprecation(
"get_result will soon be deprecated. "
"Please use send and recv for your own EnvWorker.",
)
if not self.is_reset:
self.result = self.get_result()
return self.result
@abstractmethod
def reset(self, **kwargs: Any) -> tuple[np.ndarray, dict]:
pass
def step(self, action: np.ndarray) -> gym_new_venv_step_type:
"""Perform one timestep of the environment's dynamic.
"send" and "recv" are coupled in sync simulation, so users only call
"step" function. But they can be called separately in async
simulation, i.e. someone calls "send" first, and calls "recv" later.
"""
self.send(action)
return self.recv() # type: ignore
@staticmethod
def wait(
workers: list["EnvWorker"],
wait_num: int,
timeout: float | None = None,
) -> list["EnvWorker"]:
"""Given a list of workers, return those ready ones."""
raise NotImplementedError
def seed(self, seed: int | None = None) -> list[int] | None:
return self.action_space.seed(seed) # issue 299
@abstractmethod
def render(self, **kwargs: Any) -> Any:
"""Render the environment."""
@abstractmethod
def close_env(self) -> None:
pass
def close(self) -> None:
if self.is_closed:
return
self.is_closed = True
self.close_env()