Tianshou/test/throughput/test_batch_profile.py
youkaichao a9f9940d17
code refactor for venv (#179)
- Refacor code to remove duplicate code

- Enable async simulation for all vector envs

- Remove `collector.close` and rename `VectorEnv` to `DummyVectorEnv`

The abstraction of vector env changed.

Prior to this pr, each vector env is almost independent.

After this pr, each env is wrapped into a worker, and vector envs differ with their worker type. In fact, users can just use `BaseVectorEnv` with different workers, I keep `SubprocVectorEnv`, `ShmemVectorEnv` for backward compatibility.

Co-authored-by: n+e <463003665@qq.com>
Co-authored-by: magicly <magicly007@gmail.com>
2020-08-19 15:00:24 +08:00

122 lines
3.3 KiB
Python

import copy
import pickle
import numpy as np
import pytest
import torch
from tianshou.data import Batch
@pytest.fixture(scope="module")
def data():
print("Initialising data...")
np.random.seed(0)
batch_set = [Batch(a=[j for j in np.arange(1e3)],
b={'b1': (3.14, 3.14), 'b2': np.arange(1e3)},
c=i) for i in np.arange(int(1e4))]
batch0 = Batch(
a=np.ones((3, 4), dtype=np.float64),
b=Batch(
c=np.ones((1,), dtype=np.float64),
d=torch.ones((3, 3, 3), dtype=torch.float32),
e=list(range(3))
)
)
batchs1 = [copy.deepcopy(batch0) for _ in np.arange(1e4)]
batchs2 = [copy.deepcopy(batch0) for _ in np.arange(1e4)]
batch_len = int(1e4)
batch3 = Batch(obs=[np.arange(20) for _ in np.arange(batch_len)],
reward=np.arange(batch_len))
indexs = np.random.choice(batch_len,
size=batch_len // 10, replace=False)
slice_dict = {'obs': [np.arange(20)
for _ in np.arange(batch_len // 10)],
'reward': np.arange(batch_len // 10)}
dict_set = [{'obs': np.arange(20), 'info': "this is info", 'reward': 0}
for _ in np.arange(1e2)]
batch4 = Batch(
a=np.ones((10000, 4), dtype=np.float64),
b=Batch(
c=np.ones((1,), dtype=np.float64),
d=torch.ones((1000, 1000), dtype=torch.float32),
e=np.arange(1000)
)
)
print("Initialised")
return {
'batch_set': batch_set,
'batch0': batch0,
'batchs1': batchs1,
'batchs2': batchs2,
'batch3': batch3,
'indexs': indexs,
'dict_set': dict_set,
'slice_dict': slice_dict,
'batch4': batch4
}
def test_init(data):
"""Test Batch __init__()."""
for _ in np.arange(10):
_ = Batch(data['batch_set'])
def test_get_item(data):
"""Test get with item."""
for _ in np.arange(1e5):
_ = data['batch3'][data['indexs']]
def test_get_attr(data):
"""Test get with attr."""
for _ in np.arange(1e6):
data['batch3'].get('obs')
data['batch3'].get('reward')
_, _ = data['batch3'].obs, data['batch3'].reward
def test_set_item(data):
"""Test set with item."""
for _ in np.arange(1e4):
data['batch3'][data['indexs']] = data['slice_dict']
def test_set_attr(data):
"""Test set with attr."""
for _ in np.arange(1e4):
data['batch3'].c = np.arange(1e3)
data['batch3'].obs = data['dict_set']
def test_numpy_torch_convert(data):
"""Test conversion between numpy and torch."""
for _ in np.arange(1e5):
data['batch4'].to_torch()
data['batch4'].to_numpy()
def test_pickle(data):
for _ in np.arange(1e4):
pickle.loads(pickle.dumps(data['batch4']))
def test_cat(data):
"""Test cat"""
for i in range(10000):
Batch.cat((data['batch0'], data['batch0']))
data['batchs1'][i].cat_(data['batch0'])
def test_stack(data):
"""Test stack"""
for i in range(10000):
Batch.stack((data['batch0'], data['batch0']))
data['batchs2'][i].stack_([data['batch0']])
if __name__ == '__main__':
pytest.main(["-s", "-k batch_profile", "--durations=0", "-v"])